
Philosophical Problems in
Software Engineering

A Personal Perspective

Jack K. Horner

JKH_20201025_0619CT Philosophy/Software Engineering 1

Overview

• Objective

• What is software engineering?

• Software engineering standards

JKH_20201025_0619CT Philosophy/Software Engineering 2

Objective

• To survey some entangling alliances (Washington 1796)
between
• Epistemology
• Ethics
• Metaphysics
• Ontology
• Logic

and software engineering

JKH_20201025_0619CT Philosophy/Software Engineering 3

What is software engineering?

A widely used software engineering standard (ISO 2017) says, in effect,
that software engineering is

An integrated set of software development
• practices

• procedures

• artifacts

that optimizes on some set of objectives (e.g., minimizing cost,

schedule, risk)

JKH_20201025_0619CT Philosophy/Software Engineering 4

Does software engineering have any
philosophical content?

• Advocatus diaboli
• Almost no software engineer believes s/he has to address philosophical

topics
• Almost no philosopher of computing pays attention to software

engineering as such (Winsberg 2010; Oreskes, Shrader-Frechette, and
Belitz 1994 are two exceptions)

• “Shut up and calculate!” (attributed to Richard Feynman (Mermin
2004))

• What would Plato do in a jam like this? (Kevin Kline in A Fish
Called Wanda, Cleese 1988)

JKH_20201025_0619CT Philosophy/Software Engineering 5

What is software engineering?

• ISO 2017 presumes we have a reasonably good idea of
• What software is

• What might count as “objectives”

• How given development practices, procedures, and artifacts
optimize on a given set of objectives

JKH_20201025_0619CT Philosophy/Software Engineering 6

What is software? (What various people have
said)

• A codification, in a computer language, of something that can
be executed on a physical computer (paraphrase of Piccinini
2015) [Issue: this requires us to say what a physical computer
is]

• (A program is) a proof (Curry/Howard 1969) [Issue: not all
programs are proofs, unless we define “proof” in a
pathologically narrow way]

• (A simulation is) like an experiment (Morrison 2009, 2015)
• (A simulation is) like measurement practices (Morrison 2009)
• (Computer simulation) software is like a scientific instrument

(Alvarado 2020)

JKH_20201025_0619CT Philosophy/Software Engineering 7

What is software? (What various people have
said, cont’d)

• (Computer models are) a formal extension of mathematical
representation (Weisberg 2012 and Pincock 2011) [Issues: some AI
software is not consistent with probability theory. What formal
extension, specifically, is involved?]

• Software involves representations and imaging (Barberousse and
Vorms 2009) [Issues: what do we mean, precisely, by “representation”
(the entire history of epistemology?) and “imaging”?]

• (At least some) Software involves hypothesis generation testing [Issue:
not all does]

• Among other things, a motley collection of computer languages,
models, and engineering rules of thumb (Winsberg 2010)

JKH_20201025_0619CT Philosophy/Software Engineering 8

What is software? (What various people have
said)

• Strong pancomputation: Every physical system is a computer (Putnam
1967) [Issue: this implies that a mere rock is a computer. Is a “So
what?” reply adequate?]

• Computing (including software) is purely syntactic in nature (a view
motivated by Stich 1983). [Issue: this view doesn’t explain how we
individuate things that are, and are not, computers, in solely syntactic
terms. It seems we have to invoke something outside of syntactics
proper to make those distinctions]

JKH_20201025_0619CT Philosophy/Software Engineering 9

What is software? (the Turing view)

• A set of instructions written in a Turing-complete (Turing 1936)
language (e.g., the lambda calculus; all modern standardized
computing languages such as C/C++, Java, Ada, Fortran)

• A Turing-complete language is one that can characterize a Turing
machine (see Boolos, Burgess, and Jeffrey 2007 for a definition)

• This is the most commonly used definition of “computer” and
“computer language”

• In the next few slides, let’s look at whether the Turing-machine idiom
captures everything we mean by “computable”

JKH_20201025_0619CT Philosophy/Software Engineering 10

Does the Turing-machine idiom capture
everything we mean by “computable”?
• Let’s assume that any adequate conception of computation must at least

capture arithmetic on positive integers

• A function f from positive integers to positive integers is called effectively
computable if a list of instructions can be given that in principle make it
possible to determine the value of f(n) for any positive integer n

• The instructions must be completely definite and explicit

• This definition is hand-waving in various ways. For example, the notions of
“completely definite” and “explicit” are relative to something more
fundamental (such as a formal language or set-theoretic notions)

• The definition above is rigorous enough for the purposes of this talk

JKH_20201025_0619CT Philosophy/Software Engineering 11

Does the Turing-machine idiom capture
everything we mean by “computable”?
• A numerical function of k arguments is Turing computable if there is some Turing

machine that can compute it

• A function (e.g., addition, subtraction) that is effectively computable on an
idealized abacus is called an abacus computable function. Abacus computable
functions are Turing computable. (See Boolos, Burgess, and Jeffrey 2007, Chap. 5
for a details.)

• A recursive function (see Boolos, Burgess, and Jeffrey 2007, Chap. 6) of a given
kind K is a function that is defined by (a) a set of primitive functions (sometimes
called the “basis” or the “basic” functions), together with (b) function-schema
that tell us how to generate all other members of the K, starting with the basic
functions.

• A recursively computable function is an effectively computable recursive function.
Ordinary arithmetic, for example can be defined in terms of recursively
computable functions (see Chang and Keisler 2012, 42). Recursive arithmetic
functions are abacus computable, so are Turing compatible.

JKH_20201025_0619CT Philosophy/Software Engineering 12

Does the Turing-machine idiom capture
everything we mean by “computable”?

• All Turing computable functions are recursively computable

• Turing’s thesis is that any effectively computable function is Turing
computable

• Church’s thesis states that the recursive computable functions are the
effectively computable functions.

• Turing’s thesis – that all effectively computable functions are Turing
computable – is equivalent to Church’s thesis (see Boolos, Burgess,
and Jeffrey 2007, Chap. 6; Piccinini 2015, Chaps. 15-16).

JKH_20201025_0619CT Philosophy/Software Engineering 13

Does the Turing-machine idiom capture everything
we mean by “computable”? (The Halting Problem)

• Define a function (called the halting function), h, as follows. h(m,n) =
1, or 2, depending, respectively, on whether machine m, started with
input n, eventually halts, or not. The Halting Problem is to find an
effective procedure that, given any Turing machine (call that machine
m), and given any positive integer n, will enable us to determine
whether m, given n as input, ever halts.

• The Halting Problem cannot be solved on a Turing machine (Boolos,
Burgess, and Jeffrey 2007, p. 40)

JKH_20201025_0619CT Philosophy/Software Engineering 14

Does the Turing-machine idiom capture everything
we mean by “computable”? (with a nod to logic)

• It can be shown that there is an effective procedure for producing,
given any Turing machine M and an input n to M, a set of sentences G
and a sentence D such that M given n will eventually halt if and only if
G implies D.

• The question of whether there is an effective procedure for
determining whether any given finite set of sentences implies another
given sentence is called the decision problem (Tarski 1953, 3; Turing
1936; Turing 1938)

• It follows that if there were an effective procedure for deciding when
a finite set of sentences implies another sentence, then the halting
problem would be solvable.

JKH_20201025_0619CT Philosophy/Software Engineering 15

Does the Turing-machine idiom capture
everything we mean by “computable”?
• The halting problem is not solvable on a Turing machine.

• Turing’s thesis -- that any effectively computable function is Turing
computable -- thus implies that the decision problem is not effectively
computable, because it is not effectively computable on a Turing
machine (for details, see Boolos, Burgess, and Jeffrey 2007, Chap. 11;
Piccinini 2015, Chap. 15).

JKH_20201025_0619CT Philosophy/Software Engineering 16

Do Turing-machine concepts capture
everything we mean by “computable”?
• Certain non-Turing constructs, called hypercomputers, that are

claimed to be able to solve the Halting Problem, have been proposed
(for a somewhat dated introduction to the topic, see Ord 2006)

• Davis 2003 argues, in effect, that several characterizations of
“hypercomputer” implicitly assume that a hypercomputer can solve
the Halting Problem. If so, arguing that a hypercomputer can solve
the Halting Problem is circular

• Turing 1938 argues (barely) that whatever a hypercomputer is, it is
not a machine

JKH_20201025_0619CT Philosophy/Software Engineering 17

Software has an identity problem (a nod to
metaphysics)
• What do we mean when we say the same software runs on different

physical computers?

• “War Story 1”
• The Ballistic Missile Early Warning System (BMEWS) was a collection of large

radars and associated computer systems designed to detect an over-the-Pole
ICBM attack. In the early 1980s, the BMEWS software was re-engineered to
run on a more modern computer

• The acceptance criteria required the new system to produce the same
outputs as the old, given the same inputs

JKH_20201025_0619CT Philosophy/Software Engineering 18

Software has an identity problem

• War Story 1, cont’d
• A engineering-oversight organization hired by the procurer (USAF) argued

that in order to show that the new system produced the same outputs, given
the same inputs, as the old, the new system would have to be a detailed
micro-state-level emulator of the old system

• This approach would have driven the cost and schedule of the new system
beyond the procurer’s resources

• The developer argued that
• The requirements did NOT imply an emulator was required

• The behavior of the old system was sometimes, without warning, non-deterministic, so
the behavior of the old system was not, strictly speaking, even reproducible

• The procurer conceded

JKH_20201025_0619CT Philosophy/Software Engineering 19

Software has an identity problem

• War Story 2
• One of the programs in BMEWS computed the trajectory of a missile

• The output of the old system, for times close to missile launch, produced a
“saw-tooth” trajectory. The new system, running the same software as the
old, produced a smooth trajectory

• The procurer argued that the new system’s output didn’t match the old
system’s output

JKH_20201025_0619CT Philosophy/Software Engineering 20

Software has an identity problem

• War Story 2, cont’d
• The developer argued that the “saw-tooth” trajectory of the old system,

which contained instantaneous right-angle changes of direction, was
physically impossible (those accelerations would have required infinite
power)

• The procurer conceded

• Post-mortem: the behavior of the algorithm used to compute the trajectory
was sensitive to the size of a hardware-specific structure called a computer
“word”. The original computer has a 36-bit word; the new system had a 60-
bit word.

JKH_20201025_0619CT Philosophy/Software Engineering 21

Software has an identity problem (with a nod
to decision theory)
• War story 3

• Late one night in early Spring 1982, the new and old BMEWS systems at
Fylingdales Moor, North Yorkshire (UK), were running side-by-side on the
same live radar data

• The staff at the site was understandably skeptical of the new system because
it had yet to prove its reliability

• Suddenly, the old system reported an incoming ICBM

• The new system reported, in contrast, a “ghost” -- a radar return from an
aurora

• Aurora or nuclear war: What would Kant do in a jam like this?

JKH_20201025_0619CT Philosophy/Software Engineering 22

Software has an identity problem

War story 3, cont’d
• Fortunately, the site staff had decades of experience with this scenario.

They knew
• Auroras can produce radar returns, some of which look like missile tracks
• Auroral activity is cyclical (period = ~11 years), and was near its peak at the time
• An ICBM attack consisting of a single missile was extremely unlikely
• The way the software determined whether something was an attack depended on

how many times a particular segment of the software could be run in ~0.03 second.
The more times that segment could be run in that interval, the better the
characterization.

• The newer machine could run the segment about 100 times faster than the old
machine could.

• The site staff decided to believe the new system. Minutes later, they shut
off the old system permanently

JKH_20201025_0619CT Philosophy/Software Engineering 23

Software has an identity problem (COVID-19
example)
• The Imperial College London (ICL) COVID-19 simulator (ICL 2020) has

been widely used in the UK and US to justify interventions (masking,
social distancing, school closures) during the pandemic. Whether the
simulator produces correct results has fundamental public-health and
socioeconomic consequences

• The ICL simulator team made available to the public two versions of
“the” simulator, neither of which is identical to the version used for
official public-policy decision-making

JKH_20201025_0619CT Philosophy/Software Engineering 24

Software has an identity problem (COVID-19,
cont’d)
• Do the results of the three versions differ in any important

way?
• The ICL team says it doesn’t guarantee anything about the publicly

available versions
• We have limited information about the outputs of the non-public

version
• Various authors (Horner and Symons 2020b; Eglen 2020; Rice,

Wynne, Martin, and Ackland 2020) have evaluated the publicly
available versions of “the” simulator and raised significant
concerns about identity of the code and the reproducibility of its
results

JKH_20201025_0619CT Philosophy/Software Engineering 25

Does software need hardware?

• Can software be characterized without reference to hardware?

• It is theoretically possible to encode in a pure energy regime anything
a Turing machine could do. This tells us that a physical realization of
Turing machine does not in principle have to have a material
character

• Suppose there were a purely mathematical function that could
produce all the formal domain/range relationships that a physical
computer could. There is nothing contradictory in such a notion. Why
wouldn’t that function be a “computer”? (an idea suggested in
Bradbury 1950)

JKH_20201025_0619CT Philosophy/Software Engineering 26

Does software need hardware?

• Any computing functionality that is attributable to software could in
principle be implemented in hardware alone. This suggests that at
least the computing functionality of software is not inherently distinct
from the functionality of certain hardware configurations.

• (Facetious?) “Really good software doesn’t need hardware” (Watkin
1995)

JKH_20201025_0619CT Philosophy/Software Engineering 27

Software engineering standards

• A set of prescriptions for phased software development (ISO 2017).
These phases are
• Specification

• Logical design

• Physical design

• Implementation

• Verification (often called “Test”)

• Maintenance

JKH_20201025_0619CT Philosophy/Software Engineering 28

Software engineering standards

The economic and risk-management rationale for a phase-structured
approach to software development and management are based on two
major premises (Boehm 1981, 38):

I. In order to create a “successful” software product, we must, in effect,
execute all of the phases at some stage anyway

II. Any different ordering of the phases will produce a less successful software
product

JKH_20201025_0619CT Philosophy/Software Engineering 29

Software engineering standards (Rationale I)

• We must execute all the phases at some point anyway.

• Follows directly from questions that inevitably arise in the
development of any software system:
• What objectives must the software achieve? (Specification phase)

• How do we ensure that everyone who helps to develop part the software
understands how his/her part of the software integrates with the rest of the
software? (Logical and physical design phases)

• How do we determine that the software is doing what is supposed to do?
(Verification/Test phase)

JKH_20201025_0619CT Philosophy/Software Engineering 30

Software engineering standards (Rationale II)

• If we execute the phases in any order but that described above, cost,
schedule, and risk are higher.

• Derives directly from empirical studies of the costs of fixing an error in a
software system as a function of the phase in which the error is detected
and corrected

• These studies show that in a large (> ~50,000 source lines of code (SLOC;
Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 395)) or highly
technical software project, a typical error is 100 times more expensive to
correct in the maintenance phase than in the specification phase; in small
projects (< ~10,000 SLOC), a typical error is 20 times more expensive to
correct in the maintenance phase than in the specification phase (Boehm
1976; Boehm 1981, 40).

JKH_20201025_0619CT Philosophy/Software Engineering 31

Software engineering standards

• Each of the development phases imposes requirements on, or
equivalently, allocates requirements to, the processes and products of
one or more successor phases.

• Taken end-to-end, the resulting requirements-allocation induces a
hypergraph (Berge 1973) that spans the elements (documentation,
processes, and code) in the system.

• Fodder for philosophy: in practice, there is no effective procedure for
allocating requirements to products and processes

JKH_20201025_0619CT Philosophy/Software Engineering 32

Software engineering standards

Fodder for philosophy, cont’d

• In theory, one could cast all the artifacts and processes of a phase-
structured software development regime in a formalized language
and force requirements allocation to be rendered as “derivations” in a
formal derivation system expressed in that language (see, for
example, Turner 2011; Perry et al. 2015)

• Magnusson 1990 proposed such a scheme for Ada. In that scheme,
the specification was written as a system of Ada package
specifications (a package specification in Ada is a formal construct of
the Ada language).

JKH_20201025_0619CT Philosophy/Software Engineering 33

Software engineering standards

Fodder for philosophy, cont’d

• Successful compilation of this system would demonstrate the
consistency and completeness of the whole in terms of the Ada
language definition. (A joke among Ada developers: “If you can get
an Ada system to compile, there is no need to test it.”)

• Unfortunately, any such scheme requires stakeholders to be fluent in
the formal system

JKH_20201025_0619CT Philosophy/Software Engineering 34

Software engineering standards

• Documentation is crucial to ensuring the transparency, explainability,
and reproducibility of software

• Even though this point seems self-evident, it is sometimes argued a
software listing by itself is sufficient to determine what that software
is intended to do. This view is incorrect because
• The syntax and semantics of programming languages are far from sufficient to

determine the intended application semantics (what the code is intended to
do) of a given body of software.

• Any program, regardless of what the code seems to be about, could be used
solely to show that the machine on which it runs will in some sense cycle the
program, without regard to anything else that program might be intended to
do (JKH: mention two examples)

JKH_20201025_0619CT Philosophy/Software Engineering 35

Software engineering standards

• Obviously, there is no guarantee that using a software development
process of the kind described in this section will yield an error-free
product

• Empirical studies of software error and its causes strongly suggest,
however, that if such a framework is not used, with very high
probability, software will contain at least 10 times as many errors as
software developed within such a framework (Boehm 1973; Boehm
1976; Myers 1976; Boehm 1981, 40).

JKH_20201025_0619CT Philosophy/Software Engineering 36

Specification

• The principal function of the specification phase of a software project
is to generate an agreement (called the specification) among
stakeholders that states what objectives a software system must
achieve.

• Among other things, the specification is intended to reflect the results
of the negotiation of stakeholder values, including ethical and
normative considerations (see, for example, Horner and Symons
2020b)

• Fodder for philosophy: Ethical issues in computing is a vigorous area
of research in philosophy of computing. (See, for example, any issue
of Minds and Machines in the last 10 years.)

JKH_20201025_0619CT Philosophy/Software Engineering 37

Specification (with a further nod to ethical
considerations)
• There are various ways ethical considerations are related to software

engineering
• How the software is to be used, which often requires us to take into account

what humans can, or are likely, to do

• Whether we can trust the behavior of computing systems (this is largely an
epistemological question, but it affects how we might choose to use
computing systems in ethical contexts)

• Whether a computing system could be an ethical agent
• A variant of the Turing Test suggests the answer could be “yes”

• But it is far from obvious that ethical notions are reducible to Turing-machine notions

JKH_20201025_0619CT Philosophy/Software Engineering 38

Specification (ethics, cont’d)

• Rationale I for ISO 2017 is largely an empirical generalization based on
cost and schedule metrics. Those metrics come from a collection of
projects in which ethical considerations do not play a particularly
deep role

• It’s not clear how well Rationale I, and therefore the argument for ISO
2017-like software engineering, would fare for non-cost/schedule
optimizations

JKH_20201025_0619CT Philosophy/Software Engineering 39

Specification, cont’d

• Optimizations in tradeoffs in software systems are
• likely to be nonlinear, e.g., in order to optimize on the entire set of

objectives, we may not be able to optimize each of the objectives (e.g.,
there are tradeoffs among time, money, and risk)

• often only partially ordered – in general, it is not possible to compare
optimizations across all contexts of interest

JKH_20201025_0619CT Philosophy/Software Engineering 40

Logical design

• Objective: to generate an abstract description, called a Logical Design
Document, of a system that satisfies the requirements of the specification.

• The abstract description that satisfies the specification assumes no
particular implementation in hardware, software, or human procedures.

• Various languages can be used to express the logical design. In current
practice, the Unified Modeling Language (see, for example, Rumbaugh,
Jacobson, and Booch 1999) is often used for this purpose

• Fodder for philosophy: in practice, the mapping between the specification
and the logical design is almost never well-defined in an effective
procedure

JKH_20201025_0619CT Philosophy/Software Engineering 41

Physical design

• Objective: to generate a concrete description, typically called the Physical Design
Document, or Detailed Physical Design Document, of how specific machines,
software, and human processes, and their interactions, will satisfy the
requirements allocated to them from prior phases

• The software-specific component of the Physical Design Document is often called
the Software Design Document, or SDD

• No software is generated is generated during this phase

• Fodder for philosophy: in practice, the mapping between the requirements
allocated from prior phases and the physical design is almost never well-defined
in an effective procedure

JKH_20201025_0619CT Philosophy/Software Engineering 42

Implementation

• Objective: to implement on actual machines, and in software and
human procedures, an operational product that satisfies the
requirements allocated to it from prior phases.

• The software developed during the implementation phase is typically
required to satisfy certain programming-language-specific standards
(sometimes called “coding guidelines”), that are inherited by
allocation from the specification phase. These standards prescribe
programming-language-specific practices that are, and proscribe
practices that are not, acceptable

• Fodder for philosophy: there is intense debate about what
programming-language-specific standards should be enforced

JKH_20201025_0619CT Philosophy/Software Engineering 43

Verification

• Objective: to determine whether the product generated in the
Implementation phase satisfies all requirements allocated to the
software. This can be viewed as part of the question of whether we
should trust software (Alvarado 2020; Boschetti and Symons 2011;
Boschetti, Fulton, Bradbury, & Symons 2012)

• Verification is typically performed at various software-build levels.

• Fodder for philosophy: This phase is fraught with philosophical
problems, as the following slides identify in more detail

JKH_20201025_0619CT Philosophy/Software Engineering 44

Verification (the Halting Problem, again)

• A specification requiring that a software system S
• be a Turing machine, and

• contain the equivalent of the halting function

cannot be verified because the Halting Problem

cannot be solved on a Turing machine

JKH_20201025_0619CT Philosophy/Software Engineering 45

Verification issues (Symons and Horner 2014)

• Could we test all paths in a program? (a path is a sequence of instructions
that can be executed in a program, beginning with program start and
ending with program exit)

• Testing all paths in a program is in general intractable for all but the
smallest (< ~300 SLOC) programs.

• Assume a 1000-SLOC program, with one binary branch (“if X, do Y”), on
average, per 10 lines, and assume all branches are on all paths
• The number branches in the code is 21000/10 = ~ 1030

• If we could formulate, execute, and evaluate one test per second, it would take 1017

lifetimes of the universe to execute all paths in this program

• A 1000-SLOC program is tiny by today’s standards (e.g., Windows 10 is
about 15 million SLOC)

JKH_20201025_0619CT Philosophy/Software Engineering 46

Verification

• Can we test parts of programs in parallel?

• Not all programs can be decomposed to independently verifiable
components. For example, large hydrodynamic simulators are state-
history-sensitive: we have to run the computation, from initial
conditions, for an unknown time (Kuzmin and Hämäläinen 2014)

• Even if we could parallelize tests, coordination of the results would be
speed-of-light-limited

• We can always imagine a program large enough that it could not be
tested in the lifetime of the Universe because of speed-of-light
coordination limitations

JKH_20201025_0619CT Philosophy/Software Engineering 47

Verification issues (Symons and Horner 2017,
2020a)
• Could we (statistically) verify a program using conventional statistical inference

theory (CSIT, Hogg, McKean, and Craig 2005)?

• Verification is equivalent to characterizing the distribution of errors in a program

• CSIT requires that the variables of interest (here, errors) be characterized in terms
of random variables (Hogg, McKean, and Craig 2005)

• Using random variables to verify a program requires us to know, logically priori to
performing tests of statistics defined in terms of (estimators of) those variables,
what the execution-path-space (= the set of all possible paths) is (Hogg, McKean,
and Craig 2005; Chung 2001, Section 3.1)

• But we have no method of determining what that path-space is without first
empirically discovering the paths in the software. That problem effectively backs
us into a problem that scales the same way that executing all the paths in the
code does

• Thus, CSIT cannot, in general, characterize such errors in all programs of interest

JKH_20201025_0619CT Philosophy/Software Engineering 48

Verification issues (Horner and Symons 2019)

• Could we verify programs by building them in such a way that they
are provably correct (an approach generically called “model
checking” (see Clarke, Henzinger, Veith, and Bloem 2018; Perry et al.
2015)?

• This approach has had some notable successes. For example, it
revealed that a simulator used to determine whether a building could
survive a large earthquake gave, in one case, a fatally wrong result

• In practice, however, all applications of model checking to date have
involved the use of software development environments that contain
millions of lines of code (e.g., operating systems, compilers, editors)
that were not developed using model-checking

JKH_20201025_0619CT Philosophy/Software Engineering 49

Verification (Horner and Symons 2019)

• Can finite agents exhaustively verify programs?

• Assume that
• In order for a software system S to satisfy a specification H, there must be a homomorphism from

the set of models (Chang and Keisler 2012) of H to the set of models of S, and
• H requires S to implement Robinson arithmetic (a subtheory of ordinary arithmetic)

• The Löwenheim-Skolem Theorem implies that there are an infinite number of non-
isomorphic models of arithmetic

• Thus, to exhaustively verify S, we must verify that an infinite number of non-isomorphic
models of arithmetic are isomorphic to a subset of the models of S

• This cannot be achieved in less than an infinite number of verification steps. No agent
capable of performing only a finite number of verification actions (each of which takes at
least some finite time, tmin, to perform) could perform such a verification

• Almost every program is required to implement ordinary arithmetic, so this is a limit (for
finite agents) to the verification of almost every program

JKH_20201025_0619CT Philosophy/Software Engineering 50

Verification (are simulators special?)

• Simulators often cannot, for various (e.g., ethical, monetary, time-
critical) reasons, be verified by empirical experiments. What does it
mean to verify a simulator in those contexts?

• A thorny case. In the US, large (100K – 1M SLOC) simulators are used
to verify the safety and efficacy of nuclear weapons (NNSA 2016).
These simulators are verified, in part, by comparing their results to
those of other simulators. Is this an infinite regress, or is there, a la
Aquinas 1270 (Pt. I, Q2, Art. 3), a “First Simulator”?

• Is this concern more about how we make justifiable inferences in the
absence of conclusive information (the problem of induction), than it
is about whether simulators present distinctive verification problems?

JKH_20201025_0619CT Philosophy/Software Engineering 51

Maintenance

• This phase iterates the phases described above after the product is
deployed, as needed

• Maintenance policies and procedures are documented in a
Maintenance Manual

• If maintenance is “so conceived and so dedicated” (Lincoln 1863), any
philosophical problem in the maintenance phase is no more than a
variant of a philosophical problem in prior phases

JKH_20201025_0619CT Philosophy/Software Engineering 52

Summary and conclusions

• Software engineering intersects in substantive ways with
• Ethics

• Epistemology

• Ontology

• Logic

• Metaphysics

JKH_20201025_0619CT Philosophy/Software Engineering 53

Acknowledgements

• This talk benefited from discussions with
• John Symons

• Ramón Alvarado

• Tony Pawlicki

• Dick Frank

• Dick Stutzke

• Tim Beeson

• Larry Cox

• For any errors that remain, I am fully responsible

JKH_20201025_0619CT Philosophy/Software Engineering 54

How to get a copy of these slides

• Download (in PDF) from my personal website:
• http://jkhorner.com/PHILOSOPHY/Philosophical_Problems_in_Software_Engineering.pdf or

• Access http://jkhorner.com/, select “PHILOSOPHY” on the splash page, then click on the
relevant link on the resulting page

• Or contact me by email: jhorner@cybermesa.com

JKH_20201025_0619CT Philosophy/Software Engineering 55

http://jkhorner.com/PHILOSOPHY/Philosophical_Problems_in_Software_Engineering.pdf
http://jkhorner.com/
mailto:jhorner@cybermesa.com

References

• Alvarado, R. (2020). Computer Simulations as Scientific Instruments
(PhD. Diss. University of Kansas).

• Aquinas. (~1270, first published 1485). Summa theologica. Vol. I.
Trans. by Fathers of the English Dominican Province, 1948. Christian
Classics.

• Barberousse, A., & Vorms, M. (2014). About the warrants of
computer-based empirical knowledge. Synthese 191.15, 3595-3620.

• Berge, C. (1973). Graphes et Hypergraphes. English translation:
Graphs and Hypergraphs. North-Holland Publishing Company.

JKH_20201025_0619CT Philosophy/Software Engineering 56

References

• Boehm, B.W. (1973). Software and its impact: a quantitative
assessment. Datamation, May 1973, 48-59.

• Boehm, B. W. (1976). Software engineering. IEEE Transactions on
Computers, December 1976, 1226-1241.

• Boehm, B. W. (1981). Software Engineering Economics. Upper Saddle
River NJ: Prentice-Hall.

• Boehm, B. W., Abts, C., Brown A. W., Chulani, S., Clark, B. K., Horowitz,
E., Madachy, R., Reifer, D., & Steece, B. (2000). Software Cost
Estimation with COCOMO II. Upper Saddle River NJ: Prentice-Hall.

JKH_20201025_0619CT Philosophy/Software Engineering 57

References

• Boolos, G. S., Burgess, J. P., & Jeffrey R. C. (2007). Computability and Logic.
Fifth Edition. Cambridge.

• Boschetti, F., & Symons, J. (2011). Why models’ outputs should be
interpreted as predictions. In International Congress on Modelling and
Simulation (MODSIM 2011) MSSANZ: Perth, WA.

• Boschetti, F., Fulton, E., Bradbury, R., & Symons, J. (2012). What is a model,
why people don’t trust them and why they should? In M. R. Raupach (Ed.),
Negotiating our future: Living scenarios for Australia to 2050 (pp. 107–
118). Australian Academy of Science.

• Bradbury, R. (1950). The Martian Chronicles. Doubleday.

• Cleese, J. (1988). A Fish Called Wanda. Metro-Goldwyn-Mayer. Film.

JKH_20201025_0619CT Philosophy/Software Engineering 58

References

• Chang, C. C., & Keisler, H. J. (2012). Model Theory. Third Edition. Dover.

• Chung, K. L. (2001). A Course in Probability Theory. Third Edition. Academic
Press.

• Clarke, E.M., Henzinger, T. A., Veith, H., & Bloem, R., eds. (2018). Handbook of
Model Checking. Springer.

• Davis, M. (2003). The Myth of Hypercomputation. In A. Shlapentokh
(ed.). Miniworkshop: Hilbert's Tenth Problem, Mazur's Conjecture and Divisibility
Sequences. MFO Report. 3. Mathematisches Forschungsinstitut Oberwolfach.

• Eglen, S. (2020). CODECHECK report comparing ICL 2020c and some tables in ICL 2020b.
https://zenodo.org/record/3865491#.XuIc-W5FyUk. Accessed 11 June 2020.

• Hogg, R. V., McKean, J. W., and Craig, A. T. (2005). Introduction to Mathematical
Statistics. 6th edition. Prentice Hall.

JKH_20201025_0619CT Philosophy/Software Engineering 59

https://www.mfo.de/document/0304a/Report03_2003.pdf
https://zenodo.org/record/3865491#.XuIc-W5FyUk

References

• Horner, J. K., & Symons, J. F. (2020a). What Have Google’s Random
Quantum Circuit Simulation Experiments Demonstrated about Quantum
Supremacy? Forthcoming in Hamid R. Arabnia, Leonidas Deligiannidis,
Fernando G. Tenetti, and Quoc-Nam Tran, eds. Advances in Software
Engineering, Education, and e-Learning. Springer Nature. A draft is
available at arXiv:2009.07359.

• Horner, J. K., & Symons, J. F. (2020b). Software engineering standards for
epidemiological modeling. Forthcoming in History and Philosophy of the
Life Sciences. A draft can be obtained from arXiv:2009.09295.

• Howard, W. A. (1980) [original paper manuscript from 1969]. "The
formulae-as-types notion of construction", in Seldin, J. P., & Hindley, J. R.
(eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism. Academic Press. pp. 479–490.

JKH_20201025_0619CT Philosophy/Software Engineering 60

References

• Imperial College London (ICL). (2020). https://github.com/mrc-
ide/covid-sim/blob/master/src/. Accessed 10 May 2020.

• ISO/IEC/IEEE. (2017). ISO/IEC/IEEE 12207:2017. Systems and
software engineering – Software life cycle processes.
https://www.iso.org/standard/63712.html. Accessed 26 May 2020.

• Kuzmin D and Hämäläinen J. (2014). Finite Element Methods for
Computational Fluid Dynamics: A Practical Guide. SIAM.

• Lincoln, A. (1863). The Gettysburg Address. In Boritt, G. (2008). The
Gettysburg Gospel: The Lincoln Speech That Nobody Knows. Simon &
Schuster.

JKH_20201025_0619CT Philosophy/Software Engineering 61

https://github.com/mrc-ide/covid-sim/blob/master/src/

References

• Magnusson, J. (1990). Personal communication.
• Mermin, N. D. (2004). Could Feynman have said this? Physics Today 57, 5,

10. https://doi.org/10.1063/1.1768652.
• Morrison, M. (2009). Models, measurement and computer simulation: the

changing face of experimentation. Philosophical Studies 143, 33-57.
• Morrison, M. (2015). Reconstructing reality. Oxford: Oxford University

Press.
• National Nuclear Security Administration (NNSA). (2016). Maintaining the

Stockpile. https://www.energy.gov/nnsa/missions/maintaining-stockpile.
Accessed 24 October 2020.

• Ord, T. (2006). The many forms of hypercomputation. Applied
mathematics and computation 178.1, 143–153.

JKH_20201025_0619CT Philosophy/Software Engineering 62

https://doi.org/10.1063/1.1768652
https://www.energy.gov/nnsa/missions/maintaining-stockpile

References

• Oreskes, N., Shrader-Frechette, K., & Belitz,K.
(1994). Verification, Validation, and Confirmation of
Numerical Models in the Earth Sciences. Science 263, 641–
646.

• Alexander, P., Pike, L., Loscocco, P. G., & Coker, P. G. (2015). Model
checking distributed mandatory access control policies. ACM
Transactions on Information and System Security (TISSEC) 2(18).

• Piccinini, G. (2015). Physical Computation: A Mechanistic
Account. Oxford.

JKH_20201025_0619CT Philosophy/Software Engineering 63

References

• Pincock, C. (2011). Modeling reality. Synthese 180, 19-32.

• Putnam, H. (1967). The mental life of some machines. In S. Hook (ed.), Dimensions of
Mind: A Symposium. Collier. pp. 138-164.

• Washington, G. (1796). The Address of Gen. Washington to the People of America on His
Declining the Presidency of the United States. American Daily Advertiser.

• Putnam, H. (1988). Representation and Reality. MIT Press.

• Rice, K., Wynne, B., Martin, V., and Ackland G. J. (2020). Effect of school closures on
mortality from coronavirus disease 2019: old and new predictions.
BMJ 2020, 371. https://doi.org/10.1136/bmj.m3588.

• Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language
Reference Manual. Addison-Wesley.

• Stich, S. (1983). From Folk Psychology to Cognitive Science: The Case Against Belief. MIT
Press.

JKH_20201025_0619CT Philosophy/Software Engineering 64

https://doi.org/10.1136/bmj.m3588

References

• Symons, J. F., & Horner, J. K. (2014). Software intensive science. Philosophy and
Technology 27, 461-477.

• Symons, J. F., &Horner, J. K. (2017). Software error as a limit to inquiry for finite
agents: challenges for the post-human scientist. In Powers, TM, ed. Philosophy
and Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics.
Springer. pp. 85-98.

• Symons, J. F., & Horner, J. K. (2019). Why there is no general solution to the
problem of software verification. Foundations of Science.
https://doi.org/10.1007/s10699-019-09611-w.

• Tarski, A. (1953). A general method in proofs of undecidability. In Tarski, A.,
Mostowski A., & Robinson R. M. Undecidable Theories. Dover reprint, pp. 1-35.

• Turing, A. (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society
42, 230–65.

JKH_20201025_0619CT Philosophy/Software Engineering 65

References

• Turing, A. (1938). Systems of Logic Based on Ordinals (PhD thesis).
Princeton University. doi:10.1112/plms/s2-45.1.161

• Turner R. (2011). Specification. Minds and Machines 21(2), 135–152.
doi:10.1007/s11023-011-9239-x.

• Watkin, H. (circa 1995). Personal communication.

• Weisberg, M. (2012). Simulation and similarity: Using models to
understand the world. Oxford.

• Winsberg, E. (2010). Science in the age of computer simulation.
Chicago.

JKH_20201025_0619CT Philosophy/Software Engineering 66

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1112%2Fplms%2Fs2-45.1.161

