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Overview

• Objective

• What is software engineering?

• Software engineering standards
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Objective

• To survey some entangling alliances (Washington 1796) 
between
• Epistemology
• Ethics
• Metaphysics
• Ontology
• Logic

and software engineering
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What is software engineering?  

A widely used software engineering standard (ISO 2017) says, in effect, 
that software engineering is

An integrated set of software development
• practices 

• procedures

• artifacts 

that optimizes on some set of objectives (e.g., minimizing cost,

schedule, risk)
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Does software engineering have any 
philosophical content? 

• Advocatus diaboli
• Almost no software engineer believes s/he has to address philosophical 

topics
• Almost no philosopher of computing pays attention to software

engineering as such (Winsberg 2010; Oreskes, Shrader-Frechette, and 
Belitz 1994 are two exceptions)

• “Shut up and calculate!” (attributed to Richard Feynman (Mermin
2004))

• What would Plato do in a jam like this?  (Kevin Kline in A Fish 
Called Wanda, Cleese 1988)

JKH_20201025_0619CT Philosophy/Software Engineering 5



What is software engineering?

• ISO 2017 presumes we have a reasonably good idea of 
• What software is

• What might count as “objectives”

• How given development practices, procedures, and artifacts 
optimize on a given set of objectives 
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What is software? (What various people have 
said)

• A codification, in a computer language, of something that can 
be executed on a physical computer (paraphrase of Piccinini 
2015) [Issue: this requires us to say what a physical computer 
is]

• (A program is) a proof (Curry/Howard 1969) [Issue: not all 
programs are proofs, unless we define “proof” in a 
pathologically narrow way]

• (A simulation is) like an experiment (Morrison 2009, 2015)
• (A simulation is) like measurement practices (Morrison 2009)
• (Computer simulation) software is like a scientific instrument 

(Alvarado 2020)
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What is software? (What various people have 
said, cont’d)

• (Computer models are) a formal extension of mathematical 
representation (Weisberg 2012 and Pincock 2011) [Issues: some AI 
software is not consistent with probability theory. What formal 
extension, specifically, is involved?]

• Software involves representations and imaging (Barberousse  and 
Vorms 2009) [Issues: what do we mean, precisely, by “representation” 
(the entire history of epistemology?) and “imaging”?]

• (At least some) Software involves hypothesis generation testing [Issue: 
not all does]

• Among other things, a motley collection of computer languages, 
models, and engineering rules of thumb (Winsberg 2010)
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What is software? (What various people have 
said)

• Strong pancomputation: Every physical system is a computer (Putnam 
1967) [Issue: this implies that a mere rock is a computer.  Is a “So 
what?” reply adequate?]

• Computing (including software) is purely syntactic in nature (a view 
motivated by Stich 1983).  [Issue: this view doesn’t explain how we 
individuate things that are, and are not, computers, in solely syntactic 
terms.  It seems we have to invoke something outside of syntactics 
proper to make those distinctions]
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What is software? (the Turing view)

• A set of instructions written in a Turing-complete (Turing 1936) 
language (e.g., the lambda calculus; all modern standardized 
computing languages such as C/C++, Java, Ada, Fortran)

• A Turing-complete language is one that can characterize a Turing 
machine (see Boolos, Burgess, and Jeffrey 2007 for a definition)

• This is the most commonly used definition of “computer” and 
“computer language”

• In the next few slides, let’s look at whether the Turing-machine idiom 
captures everything we mean by “computable”  
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Does the Turing-machine idiom capture 
everything we mean by “computable”?
• Let’s assume that any adequate conception of computation must at least 

capture arithmetic on positive integers

• A function f from positive integers to positive integers is called effectively 
computable if a list of instructions can be given that in principle make it 
possible to determine the value of f(n) for any positive integer n

• The instructions must be completely definite and explicit

• This definition is hand-waving in various ways. For example, the notions of 
“completely definite” and “explicit” are relative to something more 
fundamental (such as a formal language or set-theoretic notions)

• The definition above is rigorous enough for the purposes of this talk
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Does the Turing-machine idiom capture 
everything we mean by “computable”?
• A numerical function of k arguments is Turing computable if there is some Turing 

machine that can compute it  

• A function (e.g., addition, subtraction) that is effectively computable on an 
idealized abacus is called an abacus computable function.   Abacus computable 
functions are Turing computable.  (See Boolos, Burgess, and Jeffrey 2007, Chap. 5 
for a details.) 

• A recursive function (see Boolos, Burgess, and Jeffrey 2007, Chap. 6) of a given 
kind K is a function that is defined by (a) a set of primitive functions (sometimes 
called the “basis” or the “basic” functions), together with (b) function-schema 
that tell us how to generate all other members of the K, starting with the basic 
functions. 

• A recursively computable function is an effectively computable recursive function.  
Ordinary arithmetic, for example can be defined in terms of recursively 
computable functions (see Chang and Keisler 2012, 42). Recursive arithmetic 
functions are abacus computable, so are Turing compatible.
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Does the Turing-machine idiom capture 
everything we mean by “computable”?

• All Turing computable functions are recursively computable

• Turing’s thesis is that any effectively computable function is Turing 
computable

• Church’s thesis states that the recursive computable functions are the 
effectively computable functions.  

• Turing’s thesis – that all effectively computable functions are Turing 
computable – is equivalent to Church’s thesis (see Boolos, Burgess, 
and Jeffrey 2007, Chap. 6; Piccinini 2015, Chaps. 15-16).
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Does the Turing-machine idiom capture everything 
we mean by “computable”? (The Halting Problem)

• Define a function (called the halting function), h, as follows.  h(m,n) = 
1, or 2, depending, respectively, on whether machine m, started with 
input n, eventually halts, or not.  The Halting Problem is to find an 
effective procedure that, given any Turing machine (call that machine 
m), and given any positive integer n, will enable us to determine 
whether m, given n as input, ever halts.

• The Halting Problem cannot be solved on a Turing machine (Boolos, 
Burgess, and Jeffrey 2007, p. 40)
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Does the Turing-machine idiom capture everything 
we mean by “computable”? (with a nod to logic)

• It can be shown that there is an effective procedure for producing, 
given any Turing machine M and an input n to M, a set of sentences G 
and a sentence D such that M given n will eventually halt if and only if 
G implies D.  

• The question of whether there is an effective procedure for 
determining whether any given finite set of sentences implies another 
given sentence is called the decision problem (Tarski 1953, 3; Turing 
1936; Turing 1938)

• It follows that if there were an effective procedure for deciding when 
a finite set of sentences implies another sentence, then the halting 
problem would be solvable.  
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Does the Turing-machine idiom capture 
everything we mean by “computable”?
• The halting problem is not solvable on a Turing machine.  

• Turing’s thesis -- that any effectively computable function is Turing 
computable -- thus implies that the decision problem is not effectively 
computable, because it is not effectively computable on a Turing 
machine  (for details, see Boolos, Burgess, and Jeffrey 2007, Chap. 11; 
Piccinini 2015, Chap. 15). 
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Do Turing-machine concepts capture 
everything we mean by “computable”?
• Certain non-Turing constructs, called hypercomputers, that are 

claimed to be able to solve the Halting Problem, have been proposed 
(for a somewhat dated introduction to the topic, see Ord 2006)

• Davis 2003 argues, in effect,  that several characterizations of 
“hypercomputer” implicitly assume that a hypercomputer can solve 
the Halting Problem.  If so, arguing that a hypercomputer can solve 
the Halting Problem is circular

• Turing 1938 argues (barely) that whatever a hypercomputer is, it is 
not a machine
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Software has an identity problem (a nod to 
metaphysics)
• What do we mean when we say the same software runs on different 

physical computers?

• “War Story 1”
• The Ballistic Missile Early Warning System (BMEWS) was a collection of large 

radars and associated computer systems designed to detect an over-the-Pole 
ICBM attack.  In the early 1980s, the BMEWS software was re-engineered to 
run on a more modern computer

• The acceptance criteria required the new system to produce the same 
outputs as the old, given the same inputs
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Software has an identity problem

• War Story 1, cont’d
• A engineering-oversight organization hired by the procurer (USAF) argued 

that in order to show that the new system produced the same outputs, given 
the same inputs, as the old, the new system would have to be a detailed 
micro-state-level emulator of the old system

• This approach would have driven the cost and schedule of the new system 
beyond the procurer’s resources

• The developer argued that 
• The requirements did NOT imply an emulator was required

• The behavior of the old system was sometimes, without warning, non-deterministic, so 
the behavior of the old system was not, strictly speaking, even reproducible

• The procurer conceded
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Software has an identity problem

• War Story 2
• One of the programs in BMEWS computed the trajectory of a missile

• The output of the old system, for times close to missile launch, produced a 
“saw-tooth” trajectory.  The new system, running the same software as the 
old,  produced a smooth trajectory

• The procurer argued that the new system’s output didn’t match the old 
system’s output
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Software has an identity problem

• War Story 2, cont’d
• The developer argued that the “saw-tooth” trajectory of the old system, 

which contained instantaneous right-angle changes of direction, was 
physically impossible (those accelerations would have required infinite 
power) 

• The procurer conceded

• Post-mortem: the behavior of the algorithm used to compute the trajectory 
was sensitive to the size of a hardware-specific structure called a computer 
“word”.  The original computer has a 36-bit word; the new system had a 60-
bit word.
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Software has an identity problem (with a nod 
to decision theory)
• War story 3

• Late one night in early Spring 1982, the new and old BMEWS systems at 
Fylingdales Moor, North Yorkshire (UK),  were running side-by-side on the 
same live radar data

• The staff at the site was understandably skeptical of the new system because 
it had yet to prove its reliability

• Suddenly, the old system reported an incoming ICBM

• The new system reported, in contrast, a “ghost” -- a radar return from an 
aurora

• Aurora or nuclear war: What would Kant do in a jam like this?
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Software has an identity problem

War story 3, cont’d
• Fortunately, the site staff had decades of experience with this scenario.  

They knew
• Auroras can produce radar returns, some of which look like missile tracks
• Auroral activity is cyclical (period = ~11 years), and was near its peak at the time
• An ICBM attack consisting of a single missile was extremely unlikely
• The way the software determined whether something was an attack depended on 

how many times a particular segment of the software could be run in ~0.03 second.  
The more times that segment could be run in that interval, the better the 
characterization.

• The newer machine could run the segment about 100 times faster than the old 
machine could.

• The site staff decided to believe the new system.  Minutes later, they shut 
off the old system permanently
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Software has an identity problem (COVID-19 
example)
• The Imperial College London (ICL) COVID-19 simulator (ICL 2020) has 

been widely used in the UK and US to justify interventions (masking, 
social distancing, school closures) during the pandemic. Whether the 
simulator produces correct results has fundamental public-health and 
socioeconomic consequences 

• The ICL simulator team made available to the public two versions of 
“the” simulator, neither of which is identical to the version used for 
official public-policy decision-making
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Software has an identity problem (COVID-19, 
cont’d)
• Do the results of the three versions differ in any important 

way?
• The ICL team says it doesn’t guarantee anything about the publicly 

available versions
• We have limited information about the outputs of the non-public 

version
• Various authors (Horner and Symons 2020b; Eglen 2020; Rice, 

Wynne, Martin, and Ackland 2020)  have evaluated the publicly 
available versions of “the” simulator and raised significant 
concerns about identity of the code and the reproducibility of its  
results
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Does software need hardware?

• Can software be characterized without reference to hardware?

• It is theoretically possible to encode in a pure energy regime anything 
a Turing machine could do.  This tells us that a physical realization of 
Turing machine does not in principle have to have a material
character 

• Suppose there were a purely mathematical function that could 
produce all the formal domain/range relationships that a physical 
computer could. There is nothing contradictory in such a notion.  Why 
wouldn’t that function be a “computer”? (an idea suggested in 
Bradbury 1950)
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Does software need hardware?

• Any computing functionality that is attributable to software could in 
principle be implemented in hardware alone.  This suggests that at 
least the computing functionality of software is not inherently distinct 
from the functionality of certain hardware configurations.

• (Facetious?) “Really good software doesn’t need hardware” (Watkin 
1995)
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Software engineering standards

• A set of prescriptions for phased software development (ISO 2017).  
These phases are
• Specification

• Logical design

• Physical design

• Implementation

• Verification (often called “Test”)

• Maintenance

JKH_20201025_0619CT Philosophy/Software Engineering 28



Software engineering standards

The economic and risk-management rationale for a phase-structured 
approach to software development and management are based on two 
major premises (Boehm 1981, 38):

I. In order to create a “successful” software product, we must, in effect, 
execute all of the phases at some stage anyway

II. Any different ordering of the phases will produce a less successful software 
product 
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Software engineering standards (Rationale I)

• We must execute all the phases at some point anyway.

• Follows directly from questions that inevitably arise in the 
development of any software system: 
• What objectives must the software achieve? (Specification phase)

• How do we ensure that everyone who helps to develop part the software 
understands how his/her part of the software integrates with the rest of the 
software? (Logical and physical design phases)

• How do we determine that the software is doing what is supposed to do? 
(Verification/Test phase)
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Software engineering standards (Rationale II)

• If we execute the phases in any order but that described above, cost, 
schedule,  and risk are higher.

• Derives directly from empirical studies of the costs of fixing an error in a 
software system as a function of the phase in which the error is detected 
and corrected  

• These studies show that in a large (> ~50,000 source lines of code (SLOC; 
Boehm, Abts, Brown, Chulani, Clark, Horowitz et al. 2000, 395)) or highly 
technical software project, a typical error is 100 times more expensive to 
correct in the maintenance phase than in the specification phase; in small 
projects (< ~10,000 SLOC), a typical error is 20 times more expensive to 
correct in the maintenance phase than in the specification phase (Boehm 
1976; Boehm 1981, 40).
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Software engineering standards

• Each of the development phases imposes requirements on, or 
equivalently, allocates requirements to, the processes and products of 
one or more successor phases. 

• Taken end-to-end, the resulting requirements-allocation induces a 
hypergraph (Berge 1973) that spans the elements (documentation, 
processes, and code) in the system. 

• Fodder for philosophy: in practice, there is no effective procedure for 
allocating requirements to products and processes 
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Software engineering standards

Fodder for philosophy, cont’d

• In theory, one could cast all the artifacts and processes of a phase-
structured software development regime in a formalized language 
and force requirements allocation to be rendered as “derivations” in a 
formal derivation system expressed in that language (see, for 
example, Turner 2011; Perry et al. 2015)

• Magnusson 1990 proposed such a scheme for Ada.  In that scheme, 
the specification was written as a system of Ada package 
specifications (a package specification in Ada is a formal construct of 
the Ada language). 
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Software engineering standards

Fodder for philosophy, cont’d 

• Successful compilation of this system would demonstrate the 
consistency and completeness of the whole in terms of the Ada 
language definition.  (A joke among Ada developers:  “If you can get 
an Ada system to compile, there is no need to test it.”)

• Unfortunately, any such scheme requires stakeholders to be fluent in 
the formal system
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Software engineering standards

• Documentation is crucial to ensuring the transparency, explainability, 
and reproducibility of software 

• Even though this point seems self-evident, it is sometimes argued a 
software listing by itself is sufficient to determine what that software 
is intended to do. This view is incorrect because
• The syntax and semantics of programming languages are far from sufficient to 

determine the intended application semantics (what the code is intended to 
do) of a given body of software.  

• Any program, regardless of what the code seems to be about,  could be used 
solely to show that the machine on which it runs will in some sense cycle the 
program, without regard to anything else that program might be intended to 
do (JKH: mention two examples)
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Software engineering standards

• Obviously, there is no guarantee that using a software development 
process of the kind described in this section will yield an error-free 
product 

• Empirical studies of software error and its causes strongly suggest, 
however, that if such a framework is not used, with very high 
probability, software will contain at least 10 times as many errors as 
software developed within such a framework (Boehm 1973; Boehm 
1976; Myers 1976; Boehm 1981, 40). 
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Specification

• The principal function of the specification phase of a software project 
is to generate an agreement (called the specification) among 
stakeholders that states what objectives a software system must 
achieve. 

• Among other things, the specification is intended to reflect the results 
of the negotiation of stakeholder values, including ethical and 
normative considerations  (see, for example, Horner and Symons 
2020b)

• Fodder for philosophy: Ethical issues in computing is a vigorous area 
of research in philosophy of computing.  (See, for example, any issue 
of Minds and Machines in the last 10 years.)
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Specification (with a further nod to ethical 
considerations)
• There are various ways ethical considerations are related to software 

engineering
• How the software is to be used, which often requires us to take into account 

what humans can, or are likely, to do

• Whether we can trust the behavior of computing systems (this is largely an 
epistemological question, but it affects how we might choose to use 
computing systems in ethical contexts)

• Whether a computing system could be an ethical agent
• A variant of the Turing Test suggests the answer could be “yes”

• But it is far from obvious that ethical notions are reducible to Turing-machine notions
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Specification (ethics, cont’d)

• Rationale I for ISO 2017 is largely an empirical generalization based on  
cost and schedule metrics.  Those metrics come from a collection of 
projects in which ethical considerations do not play a particularly 
deep role 

• It’s not clear how well Rationale I, and therefore the argument for ISO 
2017-like software engineering, would fare for non-cost/schedule 
optimizations
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Specification, cont’d

• Optimizations in tradeoffs in software systems are
• likely to be nonlinear, e.g., in order to optimize on the entire set of 

objectives, we may not be able to optimize each of the objectives (e.g., 
there are tradeoffs among time, money, and risk)

• often only partially ordered – in general, it is not possible to compare 
optimizations across all contexts of interest
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Logical design

• Objective:  to generate an abstract description, called a Logical Design 
Document, of a system that satisfies the requirements of the specification. 

• The abstract description that satisfies the specification assumes no 
particular implementation in hardware, software, or human procedures. 

• Various languages can be used to express the logical design.  In current 
practice, the Unified Modeling Language (see, for example, Rumbaugh, 
Jacobson, and Booch 1999) is often used for this purpose

• Fodder for philosophy: in practice, the mapping between the specification 
and the logical design is almost never well-defined in an effective 
procedure
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Physical design

• Objective: to generate a concrete description, typically called the Physical Design 
Document, or Detailed Physical Design Document, of how specific machines, 
software, and human processes, and their interactions, will satisfy the 
requirements allocated to them from prior phases  

• The software-specific component of the Physical Design Document is often called 
the Software Design Document, or SDD

• No software is generated is generated during this phase

• Fodder for philosophy: in practice, the mapping between the requirements 
allocated from prior phases and the physical design is almost never well-defined 
in an effective procedure
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Implementation

• Objective: to implement on actual machines, and in software and 
human procedures, an operational product that satisfies the 
requirements allocated to it from prior phases.  

• The software developed during the implementation phase is typically 
required to satisfy certain programming-language-specific standards 
(sometimes called “coding guidelines”), that are inherited by 
allocation from the specification phase. These standards prescribe 
programming-language-specific practices that are, and proscribe 
practices that are not, acceptable

• Fodder for philosophy: there is intense debate about what 
programming-language-specific standards should be enforced   
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Verification

• Objective: to determine whether the product generated in the 
Implementation phase satisfies all requirements allocated to the 
software.  This can be viewed as part of the question of whether we 
should trust software (Alvarado 2020; Boschetti and Symons 2011; 
Boschetti, Fulton, Bradbury, & Symons 2012)

• Verification is typically performed at various software-build levels. 

• Fodder for philosophy: This phase is fraught with philosophical 
problems, as the following slides identify in more detail
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Verification (the Halting Problem, again)

• A specification requiring that a software system S
• be a Turing machine, and 

• contain the equivalent of the halting function 

cannot be verified because the Halting Problem

cannot be  solved on a Turing machine
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Verification issues (Symons and Horner 2014)

• Could we test all paths in a program? (a path is a sequence of instructions 
that can be executed in a program, beginning with program start and 
ending with program exit)

• Testing all paths in a program is in general intractable for all but the 
smallest (< ~300 SLOC) programs.

• Assume a 1000-SLOC program, with one binary branch (“if X, do Y”), on 
average, per 10 lines, and assume all branches are on all paths
• The number branches in the code is 21000/10 = ~ 1030

• If we could formulate, execute, and evaluate one test per second, it would take 1017

lifetimes of the universe to execute all paths in this program

• A 1000-SLOC program is tiny by today’s standards (e.g., Windows 10 is 
about 15 million SLOC)

JKH_20201025_0619CT Philosophy/Software Engineering 46



Verification

• Can we test parts of programs in parallel?

• Not all programs can be decomposed to independently verifiable 
components.  For example, large hydrodynamic simulators are state-
history-sensitive: we have to run the computation, from initial 
conditions, for an unknown time (Kuzmin and Hämäläinen 2014)

• Even if we could parallelize tests, coordination of the results would be 
speed-of-light-limited  

• We can always imagine a program large enough that it could not be 
tested in the lifetime of the Universe because of speed-of-light 
coordination limitations
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Verification issues (Symons and Horner 2017, 
2020a)
• Could we (statistically) verify a program using conventional statistical inference 

theory (CSIT, Hogg, McKean, and Craig 2005)?

• Verification is equivalent to characterizing the distribution of errors in a program

• CSIT requires that the variables of interest (here, errors) be characterized in terms 
of random variables (Hogg, McKean, and Craig 2005)

• Using random variables to verify a program requires us to know, logically priori to 
performing tests of statistics defined in terms of (estimators of) those variables, 
what the execution-path-space (= the set of all possible paths) is (Hogg, McKean, 
and Craig 2005; Chung 2001, Section 3.1)  

• But we have no method of determining what that path-space is without first 
empirically discovering the paths in the software.  That problem effectively backs 
us into a problem that scales the same way that executing all the paths in the 
code does

• Thus, CSIT cannot, in general, characterize such errors in all programs of interest
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Verification issues (Horner and Symons 2019)

• Could we verify programs by building them in such a way that they 
are provably correct  (an approach generically called “model 
checking” (see Clarke, Henzinger, Veith, and Bloem 2018; Perry et al. 
2015)?

• This approach has had some notable successes.  For example, it 
revealed that a simulator used to determine whether a building could 
survive a large earthquake gave, in one case, a fatally wrong result

• In practice, however, all applications of model checking to date have 
involved the use of software development environments that contain 
millions of lines of code (e.g., operating systems, compilers, editors) 
that were not developed using model-checking 
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Verification (Horner and Symons 2019)

• Can finite agents exhaustively verify programs?

• Assume that
• In order for a software system S to satisfy a specification H, there must be a homomorphism from 

the set of  models (Chang and Keisler 2012) of H to the set of models of S, and
• H requires S to implement Robinson arithmetic (a subtheory of ordinary arithmetic)

• The Löwenheim-Skolem Theorem implies that there are an infinite number of non-
isomorphic models of arithmetic

• Thus, to exhaustively verify S, we must verify that an infinite number of non-isomorphic 
models of arithmetic are isomorphic to a subset of the models of S

• This cannot be achieved in less than an infinite number of  verification steps.  No agent 
capable of performing only a finite number of verification actions (each of which takes at 
least some finite time, tmin, to perform) could perform such a verification

• Almost every program is required to implement ordinary arithmetic, so this is a limit (for 
finite agents) to the verification of almost every program
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Verification (are simulators special?)

• Simulators often cannot, for various (e.g., ethical, monetary, time-
critical) reasons, be verified by empirical experiments. What does it 
mean to verify a simulator in those contexts?

• A thorny case.  In the US, large (100K – 1M SLOC) simulators are used 
to verify the safety and efficacy of nuclear weapons (NNSA 2016).  
These simulators are verified, in part, by comparing their results to 
those of other simulators.  Is this an infinite regress, or is there, a la 
Aquinas 1270 (Pt. I, Q2, Art. 3), a “First Simulator”?

• Is this concern more about how we make justifiable inferences in the 
absence of conclusive information (the problem of induction), than it 
is about whether simulators present distinctive verification problems?
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Maintenance

• This phase iterates the phases described above after the product is 
deployed, as needed  

• Maintenance policies and procedures are documented in a 
Maintenance Manual

• If maintenance is “so conceived and so dedicated” (Lincoln 1863), any 
philosophical problem in the maintenance phase is no more than a  
variant of a philosophical problem in prior phases 
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Summary and conclusions

• Software engineering intersects in substantive ways with
• Ethics

• Epistemology

• Ontology

• Logic

• Metaphysics
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How to get a copy of these slides

• Download (in PDF) from my personal website:
• http://jkhorner.com/PHILOSOPHY/Philosophical_Problems_in_Software_Engineering.pdf or

• Access http://jkhorner.com/, select “PHILOSOPHY” on the splash page, then click on the 
relevant link on the resulting page

• Or contact me by email:  jhorner@cybermesa.com
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