APPENDIX. Proof of Exercise 60.

$\ln [\sigma]=$ proofEx60["ProofNotebook"]

固

Axiom 1
We are given that:
$\forall_{x}($ Dnew $[x] \Rightarrow A[x])$
Axiom 2
We are given that:
$\forall_{x}(!R[x] \Rightarrow \operatorname{Dnew}[x])$
Axiom 3
We are given that:
$\forall_{x}(!$ Enew $[x] \Rightarrow$! $R[x])$
Axiom 4
We are given that:
$\forall_{x}(!$ Cnew $[x] \Rightarrow$! Enew $[x])$
Axiom 5
We are given that:
$\forall_{x}(!K[x] \Rightarrow$! Cnew $[x])$
Axiom 6
We are given that:
$\forall_{X}(!B[x] \Rightarrow!K[x])$
Axiom 7
We are given that:
$\forall_{x}(!M[x] \Rightarrow!B[x])$
Axiom 8
We are given that:
$\forall_{x}(!L[x] \Rightarrow!M[x])$
Axiom 9
We are given that:
$\forall_{x}(!$ Nnew $[\mathrm{x}] \Rightarrow!\mathrm{L}[\mathrm{x}])$
Axiom 10
We are given that:
$\forall_{x}(H[x] \Rightarrow$! Nnew [x$\left.]\right)$

Hypothesis 1

We would like to show that:
$\forall_{x}(H[x] \Rightarrow A[x])$
Equationalized Axiom 1
We generate the "equationalized" axiom:
$x 1=(x 1| |(x 2 \& \&!x 2))$
Equationalized Axiom 2
We generate the "equationalized' axiom:
$x 1=(x 1 \& \&(x 2| |!x 2))$
Equationalized Axiom 3
We generate the "equationalized" axiom:
($\mathbf{x} 1|\mid \times 2)=\left(\mathbf{x}^{2}| | x 1\right)$
Equationalized Axiom 4
We generate the 'equationalized' axiom:
$(x 1|\mid(x 2 \& \& x 3))=((x 1| | x 2) \& \&(x 1| | x 3))$
Equationalized Axiom 5
We generate the "equationalized' axiom:
$\left(R[x 1]|\mid D n e w[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)\right.$

Equationalized Axiom 6

We generate the "equationalized' axiom:
$($ Nnew [x1] ||!L[x1] $)=\left(a_{\bullet}| |!a_{e}\right)$

Equationalized Axiom 7

We generate the "equationalized" axiom:
$\left(M[x 1]|\mid!B[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)\right.$
Equationalized Axiom 8
We generate the "equationalized' axiom:
$\left(L[x 1]|\mid!M[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)\right.$
Equationalized Axiom 9
We generate the "equationalized" axiom:
$\left(K[x 1]|\mid!\right.$ Cnew $[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)$
Equationalized Axiom 10
We generate the "equationalized" axiom:

Equationalized Axiom 11

We generate the 'equationalized'" axiom:
$($ Cnew [x1] ||!Enew [x1] $)=\left(a_{\bullet}| |!a_{\bullet}\right)$
Equationalized Axiom 12
We generate the 'equationalized'' axiom:
$\left(B[x 1]|\mid!K[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)\right.$

Equationalized Axiom 13

We generate the 'equationalized' axiom:
$(!\operatorname{Dnew}[x 1]| | A[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)$

Equationalized Axiom 14

We generate the 'equationalized'' axiom:
$(!H[x 1]| |!$ Nnew [$x 1])=\left(a_{0}| |!a_{0}\right)$

Equationalized Axiom 15

We generate the 'equationalized'" axiom:
$((x 1 \& \& x 2)|\mid(x 1 \& \& x 3))=(x 1 \& \&(x 2| | x 3))$

Equationalized Axiom 16

We generate the 'equationalized' axiom:
$(x 1 \& \& 2)=(x 2 \& \& x 1)$

Equationalized Hypothesis 1

We generate the 'equationalized' hypothesis:
$\left(!H\left[x_{\theta}\right]| | A\left[x_{\theta}\right]\right)=\left(a_{0}| |!a_{\theta}\right)$

Critical Pair Lemma 1

The following expressions are equivalent:
$((x 1 \& \&!x 1)|\mid x 2)=x 2$
Proof
Note that the input for the rule:
$\mathbf{x} \mathbf{1}_{-}| | \mathbf{x} \mathbf{2} _\leftrightarrow \mathbf{x} \mathbf{2}_{-}| | \mathbf{x} \mathbf{1}_{-}$
contains a subpattern of the form:
x1_||x2_
which can be unified with the input for the rule:
$x x_{1}| |\left(x 2 _\& \&!x 2_{-}\right) \rightarrow x 1$
where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 2

The following expressions are equivalent:
$(x 1|\mid(x 2 \& \&!x 1))=(x 1| | x 2)$
Proof

Note that the input for the rule:

```
(x1_| | x2_) &&(x1_| |x3_) }->\textrm{x}1||(x2&&x3
```

contains a subpattern of the form:
($\left.\mathbf{x} \mathbf{1}_{\mathbf{\prime}}| | x \mathbf{2}_{\mathbf{\prime}}\right) \& \&\left(\mathrm{x} \mathbf{1}_{-}| | \mathrm{x} 3 _\right)$
which can be unified with the input for the rule:
x1_\&\& (x2_||! $\mathbf{x}_{\mathbf{2}}$) $\rightarrow \mathbf{x}$ 1
where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 3

The following expressions are equivalent:
$(x 1|\mid(x 2 \& \& x 3 \& \&!x 3))=((x 1| | x 2) \& \& x 1)$
Proof
Note that the input for the rule:
$\left(x 1_{_}| | x 2_{_}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x3_
which can be unified with the input for the rule:
$\mathbf{x 1}$ _ | | ($\mathbf{x} 2 _\& \&!\mathbf{x 2}_{\mathbf{2}}$) $\rightarrow \mathbf{x} \mathbf{1}$
where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 1 respectively.

Substitution Lemma 1

It can be shown that:
(Dnew [x1] ||R[x1] $)=\left(a_{\circ}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 5, and apply the substitution:
$\mathbf{x 1}$ _||x2_ $\mathbf{~} \mathbf{x} \mathbf{2 | | x 1}$
which follows from Equationalized Axiom 3.

Substitution Lemma 2

It can be shown that:
$(!L[x 1]| |$ Nnew [x1] $)=\left(a_{0}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 6, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.
Substitution Lemma 3
It can be shown that:
$(!L[x 1]| | N n e w[x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof

We start by taking Substitution Lemma 2, and apply the substitution:

$a_{0}| |!a_{0} \rightarrow \operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 4
It can be shown that:
$(!B[x 1]| | M[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 7, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.
Substitution Lemma 5
It can be shown that:
$(!B[x 1]| | M[x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 4, and apply the substitution:
$a_{\theta}| |!a_{\theta} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{\theta}\right]$
which follows from Substitution Lemma 1.
Substitution Lemma 6
It can be shown that:
$(!M[x 1]| | L[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 8, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.
Substitution Lemma 7
It can be shown that:
$(!M[x 1]| | L[x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 6, and apply the substitution:

$a_{\theta}| |!a_{0} \rightarrow \operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 8
It can be shown that:
(! Cnew [x1] ||K[x1]) $=\left(a_{\ominus}| |!a_{\bullet}\right)$
Proof

We start by taking Equationalized Axiom 9, and apply the substitution:
$\mathbf{x 1}$ _||x2_ $\mathbf{\rightarrow} \mathbf{x} \mathbf{2 | | x 1}$
which follows from Equationalized Axiom 3.

Substitution Lemma 9

It can be shown that:
(! Cnew [x1] ||K[x1]) $=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 8, and apply the substitution:

$a_{\theta}| |!a_{\theta} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{0}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 10
It can be shown that:
$(!R[x 1]| |$ Enew [x1] $)=\left(a_{\bullet}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 10, and apply the substitution:
$\mathbf{x} \mathbf{1}_{\mathbf{\prime}}| | \mathbf{x 2} \mathbf{2} \mathbf{\rightarrow} \mathbf{x} \mathbf{2}| | \mathbf{x} \mathbf{1}$
which follows from Equationalized Axiom 3.
Substitution Lemma 11
It can be shown that:
$(!R[x 1]| | E n e w[x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 10, and apply the substitution:

$a_{0}| |!a_{0} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{0}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 12
It can be shown that:
$(!$ Enew [x1] ||Cnew [x1] $)=\left(a_{\bullet}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 11, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.
Substitution Lemma 13
It can be shown that:
$($ Enew [x 1$]|\mid$ Cnew [x 1$]$) $=\left(\operatorname{Dnew}\left[\mathrm{x}_{0}\right]| | \mathrm{R}\left[\mathrm{x}_{0}\right]\right)$
Proof

We start by taking Substitution Lemma 12, and apply the substitution:

$a_{\theta}| |!a_{\theta} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{\theta}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 14
It can be shown that:
$(!K[x 1]| | B[x 1])=\left(a_{\bullet}| |!a_{\bullet}\right)$
Proof
We start by taking Equationalized Axiom 12, and apply the substitution:
x1_||x2_ \rightarrow x $2|\mid x 1$
which follows from Equationalized Axiom 3.
Substitution Lemma 15
It can be shown that:
$(!K[x 1]| | B[x 1])==\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 14, and apply the substitution:
$a_{\bullet}| |!a_{\bullet} \rightarrow \operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{\theta}\right]$
which follows from Substitution Lemma 1.
Substitution Lemma 16
It can be shown that:
$\left(A[x 1]|\mid!\operatorname{Dnew}[x 1])=\left(a_{0}| |!a_{\bullet}\right)\right.$
Proof
We start by taking Equationalized Axiom 13, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.

Substitution Lemma 17

It can be shown that:
$\left(A[x 1]|\mid!\operatorname{Dnew}[x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)\right.$
Proof
We start by taking Substitution Lemma 16, and apply the substitution:

$a_{\theta}| |!a_{\theta} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{\theta}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 18
It can be shown that:
! L[x1_] ||Nnew [x1_] \rightarrow A [x_{0}] || !Dnew [x_{0}]
Proof

We start by taking Substitution Lemma 3, and apply the substitution:
Dnew [$\left.x_{0}\right]\left|\left|R\left[x_{0}\right] \rightarrow A\left[x_{0}\right]\right|\right|!\operatorname{Dnew}\left[x_{0}\right]$
which follows from Substitution Lemma 17.
Substitution Lemma 19
It can be shown that:
$!K\left[x 1_{-}\right]| | B\left[x 1_{-}\right] \rightarrow A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]$
Proof
We start by taking Substitution Lemma 15, and apply the substitution:
$\operatorname{Dnew}\left[\mathrm{x}_{0}\right]\left|\left|R\left[\mathrm{x}_{0}\right] \rightarrow \mathrm{A}\left[\mathrm{x}_{0}\right]\right|\right| \mid \operatorname{Dnew}\left[\mathrm{x}_{0}\right]$
which follows from Substitution Lemma 17.
Substitution Lemma 20
It can be shown that:
!Enew [x1_] ||Cnew[x1_] $\rightarrow \mathrm{A}\left[\mathrm{x}_{0}\right]\left|\mid\right.$! Dnew [x_{0}]
Proof
We start by taking Substitution Lemma 13, and apply the substitution:
$\operatorname{Dnew}\left[\mathrm{x}_{\theta}\right]\left|\left|R\left[\mathrm{x}_{0}\right] \rightarrow \mathrm{A}\left[\mathrm{x}_{\theta}\right]\right|\right|$! Dnew [$\left.\mathrm{x}_{\theta}\right]$
which follows from Substitution Lemma 17.
Substitution Lemma 21
It can be shown that:
$!R\left[x 1_{-}\right]| | E n e w\left[x 1_{-}\right] \rightarrow A\left[x_{0}\right]| |!$ Dnew [x_{0}]
Proof
We start by taking Substitution Lemma 11, and apply the substitution:
$\operatorname{Dnew}\left[\mathrm{x}_{\theta}\right]\left|\left|R\left[\mathrm{x}_{0}\right] \rightarrow \mathrm{A}\left[\mathrm{x}_{0}\right]\right|\right|!\operatorname{Dnew}\left[\mathrm{x}_{\theta}\right]$
which follows from Substitution Lemma 17.
Substitution Lemma 22
It can be shown that:
! Cnew [x1_] ||K[x1_] \rightarrow A [$\left.x_{0}\right]\left|\mid!\right.$ Dnew [x_{0}]
Proof
We start by taking Substitution Lemma 9, and apply the substitution:
$\operatorname{Dnew}\left[\mathrm{x}_{0}\right]\left|\left|R\left[\mathrm{x}_{0}\right] \rightarrow \mathrm{A}\left[\mathrm{x}_{0}\right]\right|\right|!\operatorname{Dnew}\left[\mathrm{x}_{0}\right]$
which follows from Substitution Lemma 17.

Substitution Lemma 23

It can be shown that:
$!M\left[x 1_{-}\right]| | L\left[x 1_{-}\right] \rightarrow A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]$
Proof
vve start Dy takıng substitution Lemma I, ana appıy tne substitution:
$\operatorname{Dnew}\left[\mathrm{x}_{0}\right]\left|\left|R\left[\mathrm{x}_{0}\right] \rightarrow \mathrm{A}\left[\mathrm{x}_{0}\right]\right|\right| \mid$ Dnew [x_{0}]
which follows from Substitution Lemma 17.
Substitution Lemma 24
It can be shown that:
$!B\left[x 1_{-}\right]| | M\left[x 1_{-}\right] \rightarrow A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]$
Proof
We start by taking Substitution Lemma 5, and apply the substitution:
$\operatorname{Dnew}\left[x_{0}\right]\left|\left|R\left[x_{0}\right] \rightarrow A\left[x_{0}\right]\right|\right|!\operatorname{Dnew}\left[x_{0}\right]$
which follows from Substitution Lemma 17.

Substitution Lemma 25

It can be shown that:
(! $\mathrm{H}[\mathrm{x} 1]|\mid!$ Nnew [x1] $)=\left(\operatorname{Dnew}\left[\mathrm{x}_{0}\right]| | R\left[\mathrm{x}_{0}\right]\right)$
Proof
We start by taking Equationalized Axiom 14, and apply the substitution:

$a_{\theta}| |!a_{\theta} \rightarrow \operatorname{Dnew}\left[x_{\theta}\right]| | R\left[x_{\theta}\right]$

which follows from Substitution Lemma 1.
Substitution Lemma 26
It can be shown that:
$(!H[x 1]| |!\operatorname{Nnew}[x 1])=\left(A\left[X_{\theta}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 25, and apply the substitution:
$\operatorname{Dnew}\left[x_{0}\right]\left|\left|R\left[x_{0}\right] \rightarrow A\left[x_{0}\right]\right|\right|!\operatorname{Dnew}\left[x_{0}\right]$
which follows from Substitution Lemma 17.

Critical Pair Lemma 4

The following expressions are equivalent:
$\left(!H[x 1]| |(!\right.$ Nnew [x1] \&\&x2) $)=\left(\left(A\left[x_{0}\right]| |!\right.\right.$ Dnew [$\left.\left.\left.x_{0}\right]\right) \& \&(!H[x 1]| | x 2)\right)$
Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{-}\right) \& \&\left(x 1_{_}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x2_
which can be unified with the input for the rule:
$!H\left[x 1_{-}\right]| |!$Nnew [$\left.x 1_{-}\right] \rightarrow A\left[x_{0}\right]\left|\mid!\operatorname{Dnew}\left[x_{0}\right.\right.$]
where these rules follow from Equationalized Axiom 4 and Substitution Lemma 26 respectively.
Critical Pair Lemma 5

The following expressions are equivalent:
$(x 1 \& \&(x 2|\mid!x 1))=(x 1 \& \& 2)$
Proof
Note that the input for the rule:
$\left(x 1 _\& \& x 2_{-}\right)\left|\mid\left(x 1_{-} \& \& x 3 _\right) \rightarrow x 1 \& \&(x 2| | x 3)\right.$
contains a subpattern of the form:
(x1_\&\&x2_) || (x1_\&\&x3_)
which can be unified with the input for the rule:
$x 1_{1}| |\left(x 2_{-} \& \&!x_{2}\right) \rightarrow x 1$
where these rules follow from Equationalized Axiom 15 and Equationalized Axiom 1 respectively.
Critical Pair Lemma 6
The following expressions are equivalent:
((x1||!x1) \&\&x2) =:x2
Proof
Note that the input for the rule:
$\mathbf{x 1 _ \& \& x 2 _ \leftrightarrow} \mathbf{x} \mathbf{2}_{\text {_ }} \& \& \times 1$ _
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:
$\mathbf{x 1}$ _\& ($\mathbf{x} \mathbf{2}_{-}| |!\mathbf{x 2}_{\mathbf{2}}$) $\rightarrow \mathbf{x} \mathbf{1}$
where these rules follow from Equationalized Axiom 16 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 7

The following expressions are equivalent:
$(x 1 \& \& x 2)=(x 1 \& \&(!x 1| | x 2))$
Proof
Note that the input for the rule:
$(\mathbf{x 1}$ _\&\&! $\mathbf{x 1}$ _) || $\mathbf{x 2}$ _ $\mathbf{\rightarrow} \mathbf{x} \mathbf{2}$
contains a subpattern of the form:
(x1_\&\&!x1_)||x2_
which can be unified with the input for the rule:
$\left(x 1 _\& \& x 2_{-}\right)\left|\mid\left(x 1_{-} \& \& x 3 _\right) \rightarrow x 1 \& \&(x 2| | x 3)\right.$
where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 15 respectively.
Critical Pair Lemma 8
The following expressions are equivalent:
$(x 1|\mid x 2)=(x 1| |(!x 1 \& \& x 2))$
Proof
Note that the input for the rule:

```
\(\left(x 1_{-}| |!x 1_{-}\right) \& \& x 2_{-} \rightarrow \mathbf{x 2}\)
```

contains a subpattern of the form:
(x1_||!x1_) \&\&x2_
which can be unified with the input for the rule:
$\left(x 1_{-}| | x 2_{_}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 9

The following expressions are equivalent:
$(x 1|\mid!x 1)=(x 2| |!x 2)$
Proof
Note that the input for the rule:
$\left(x 1_{-}| |!x 1_{-}\right) \& \& x \mathbf{2}_{\mathbf{-}} \mathbf{\rightarrow} \mathbf{x} \mathbf{2}$
contains a subpattern of the form:
(x1_||!x1_) \&\&x2_
which can be unified with the input for the rule:
$x 1 _\& \&\left(x 2_{-}| |!x 2_{-}\right) \rightarrow x 1$
where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 10

The following expressions are equivalent:
($\mathrm{x} 1|\mid \mathrm{x} 1$) $=\mathrm{x} 1$
Proof
Note that the input for the rule:
x1_||(x2_\&\&! $\mathbf{x 1}$) $\rightarrow \mathbf{x} \mathbf{1 | | x 2}$
contains a subpattern of the form:
x1_||(x2_\&\&!x1_)
which can be unified with the input for the rule:

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 11

The following expressions are equivalent:
$(x 1|\mid(x 1 \& \& x 2))=(x 1 \& \&(x 1| | x 2))$
Proof
Note that the input for the rule:
$\left(x 1_{_}| | x 2_{-}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x2_
which can be unified with the input for the rule:
x 1 ||x1 $\rightarrow \mathrm{x} 1$
where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 10 respectively.

Critical Pair Lemma 12

The following expressions are equivalent:
$(x 1|\mid(x 2 \& \& x 1))=((x 1| | x 2) \& \& x 1)$
Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{-}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x3_
which can be unified with the input for the rule:
$\mathbf{x 1}$ _||x1_ $\mathbf{\rightarrow x} \mathbf{1}$
where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 10 respectively.
Substitution Lemma 27
It can be shown that:
$(x 1|\mid(x 2 \& \& x 1))=(x 1 \& \&(x 1| | x 2))$
Proof
We start by taking Critical Pair Lemma 12, and apply the substitution:

$\mathrm{x} 1 _\& \& \mathrm{x} 2 _\rightarrow \mathrm{x} 2 \& \& \mathrm{x} 1$

which follows from Equationalized Axiom 16.

Critical Pair Lemma 13

The following expressions are equivalent:
(! $\mathrm{R}[\mathrm{x} 1]$ \&\&Dnew [x 1$]$) $=\left(!\mathrm{R}[\mathrm{x} 1]\right.$ \&\& $\left.\left(\mathrm{a}_{\bullet}| |!\mathrm{a}_{\ominus}\right)\right)$
Proof
Note that the input for the rule:
$\mathbf{x 1 _ \& \& (x 2 _ | | ! x 1 _) ~} \rightarrow \mathbf{x 1 \& \& x 2}$
contains a subpattern of the form:
x2_||!x1_
which can be unified with the input for the rule:
"0"
where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 1 respectively.
Substitution Lemma 28
It can be shown that:

Proof
We start by taking Critical Pair Lemma 13, and apply the substitution:
x1_\&\& (x2_||! $x 2_{-}$) $\rightarrow \mathrm{x} 1$

which follows from Equationalized Axiom 2.

Critical Pair Lemma 14

The following expressions are equivalent:
$(x 1 \& \& x 1)=x 1$
Proof
Note that the input for the rule:
x1_\&\& (! $\left.x 1_{-}| | x 2_{-}\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
x1_\&\&(!x1_||x2_)
which can be unified with the input for the rule:
x1_\&\&(x2_||!x2_) $\rightarrow \mathbf{x} 1$
where these rules follow from Critical Pair Lemma 7 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 15

The following expressions are equivalent:
True
Proof
Note that the input for the rule:
x1_||(!x1_\&\&x2_) $\rightarrow \mathrm{x} 1|\mid x 2$
contains a subpattern of the form:
! x1_\&\&x2_
which can be unified with the input for the rule:
$\mathbf{x} 1 _\& \& x 1 _\rightarrow \mathbf{x} \mathbf{1}$
where these rules follow from Critical Pair Lemma 8 and Critical Pair Lemma 14 respectively.
Substitution Lemma 29
It can be shown that:
(Dnew [x1] \&\& ! $\mathrm{R}[\mathrm{x} 1]$) $=$: ! $\mathrm{R}[\mathrm{x} 1$]
Proof
We start by taking Substitution Lemma 28, and apply the substitution:
$\mathrm{x} 1 _\& \& \times 2$ _ $\rightarrow \mathrm{x} 2 \& \& \mathrm{x} 1$
which follows from Equationalized Axiom 16.

Critical Pair Lemma 16

The following expressions are equivalent:
$(R[x 1]|\mid \operatorname{Dnew}[x 1])=(R[x 1]| |!R[x 1])$
Proof
Note that the input for the rule:
x1_||(x2_\&\&! $\left.x 1_{-}\right) \rightarrow x 1|\mid x 2$
contains a subnattern of the form:

x2_\&\&!x1_

which can be unified with the input for the rule:

Dnew [x1_] \&\&! $R\left[x 1_{-}\right] \rightarrow!R[x 1]$

where these rules follow from Critical Pair Lemma 2 and Substitution Lemma 29 respectively.

Critical Pair Lemma 17

The following expressions are equivalent:
$(x 1 \& \& x 1)=(x 1 \& \&(x 1| |!x 1))$
Proof
Note that the input for the rule:
$x 1 _\& \&\left(x 2_{-}| |!x 1_{-}\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
x2_||! $\mathbf{x 1}_{\text {_ }}$
which can be unified with the input for the rule:
x1_||! $\mathbf{x 1 _ \rightarrow x 1 | | ! x 1 ~}$
where these rules follow from Critical Pair Lemma 5 and Critical Pair Lemma 15 respectively.
Substitution Lemma 30
It can be shown that:
$(x 1 \& \& x 1)=x 1$
Proof
We start by taking Critical Pair Lemma 17, and apply the substitution:

```
x1_&&(x2_||!x2_) }->\textrm{x}
```

which follows from Equationalized Axiom 2.

Substitution Lemma 31

It can be shown that:
$(x 1 \& \& x 1)=x 1$
Proof
We start by taking Substitution Lemma 30, and apply the substitution:

$\mathbf{x 1 _ \& \& x 2 _ \rightarrow x 2 \& \& x 1}$

which follows from Equationalized Axiom 16.
Substitution Lemma 32
It can be shown that:
True
Proof
We start by taking Substitution Lemma 31, and apply the substitution:
$\mathrm{x} 1 _\& \& \mathrm{x} 1 _\rightarrow \mathrm{x} 1$
which follows from Critical Pair Lemma 14.

Critical Pair Lemma 18

The following expressions are equivalent:
$(!x 1| | x 2)=(!x 1| |(x 1 \& \& x 2))$
Proof
Note that the input for the rule:
x1_||(!x1_\&\&x2_) $\rightarrow \mathbf{x 1 | | x 2}$
contains a subpattern of the form:
! x1_
which can be unified with the input for the rule:
$\mathbf{x 1}$ _ $\rightarrow \mathbf{x} 1$
where these rules follow from Critical Pair Lemma 8 and Substitution Lemma 32 respectively.
Critical Pair Lemma 19
The following expressions are equivalent:
$(!x 1 \& \& x 2)=(!x 1 \& \&(x 2| | x 1))$
Proof
Note that the input for the rule:
$x 1 _\& \&\left(x 2_{-}| |!x 1_{-}\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
! x1_
which can be unified with the input for the rule:
$\mathbf{x 1}$ _ \rightarrow x1
where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 32 respectively.
Substitution Lemma 33
It can be shown that:
$(A[x 1]|\mid$ Dnew [$x 1])=\left(\operatorname{Dnew}\left[x_{0}\right]| | R\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 17, and apply the substitution:
$\mathbf{x 1}$ _ \rightarrow x1
which follows from Substitution Lemma 32.
Substitution Lemma 34
It can be shown that:
(! L [x1] ||Nnew [x1]) = (A [$\left.\mathrm{x}_{0}\right]\left|\mid\right.$!Dnew [$\left.\mathrm{x}_{0}\right]$)
Proof
We start by taking Substitution Lemma 18, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
CuhctitıItinn I amma 2 に

It can be shown that:
$(!K[x 1]| | B[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 19, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.

Substitution Lemma 36

It can be shown that:
(!Enew [x1] ||Cnew [x1]) = (A [x_{0}]||!Dnew [x_{0}])
Proof
We start by taking Substitution Lemma 20, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 37
It can be shown that:
$(!R[x 1]| | E n e w[x 1])=\left(A\left[x_{0}\right]| |!\right.$ Dnew [$\left.\left.x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 21, and apply the substitution:
$x 1_{-} \rightarrow \mathbf{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 38
It can be shown that:
$(!$ Cnew [x 1$]|\mid \mathrm{K}[\mathrm{x} 1])=\left(\mathrm{A}\left[\mathrm{x}_{0}\right]| |\right.$!Dnew [$\left.\left.\mathrm{x}_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 22, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 39
It can be shown that:
$(!M[x 1]| | L[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 23, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 40

It can be shown that:
$(!B[x 1]| | M[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 24, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Critical Pair Lemma 20
The following expressions are equivalent:
$(x 1 \& \& x 1 \& \& x 2)=(x 1 \& \&(!x 1| | x 2))$
Proof
Note that the input for the rule:
x1_\&\& (! $\left.x 1_{1}| | x 2_{-}\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
! $\times 1$ _ ||x2_
which can be unified with the input for the rule:
! $x 1_{1}| |\left(x 1_{-} \& \& x_{2}\right.$) \rightarrow ! $x 1| | x 2$
where these rules follow from Critical Pair Lemma 7 and Critical Pair Lemma 18 respectively.
Substitution Lemma 41
It can be shown that:
$(x 1 \& \& x 1 \& \& 2)=(x 1 \& \& x 2)$
Proof
We start by taking Critical Pair Lemma 20, and apply the substitution:
$x 1 _\& \&\left(!x 1_{-}| | x 2_{-}\right) \rightarrow x 1 \& \& x 2$
which follows from Critical Pair Lemma 7.
Substitution Lemma 42
It can be shown that:
$\left(R[x 1]|\mid D n e w[x 1])=\left(x_{\theta}| |!x_{\theta}\right)\right.$
Proof
We start by taking Critical Pair Lemma 16, and apply the substitution:
$x 1_{1}| |!x_{1} \rightarrow x_{0}| |!x_{0}$
which follows from Critical Pair Lemma 9.
Critical Pair Lemma 21
The following expressions are equivalent:
$\left(R[x 1]|\mid(x 2 \& \& D n e w[x 1]))=\left((R[x 1]| | x 2) \& \&\left(x_{0}| |!x_{0}\right)\right)\right.$
Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{-}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x3_
which can be unified with the input for the rule:
$R\left[x 1_{-}\right] \mid$Dnew [$\left.x 1_{\mathbf{1}}\right] \rightarrow \mathrm{X}_{\boldsymbol{0}}| |!\mathrm{x}_{\boldsymbol{0}}$
where these rules follow from Equationalized Axiom 4 and Substitution Lemma 42 respectively.

Substitution Lemma 43

It can be shown that:
$(R[x 1]|\mid(x 2 \& \& D n e w[x 1]))=(R[x 1]| | x 2)$
Proof
We start by taking Critical Pair Lemma 21, and apply the substitution:
x1_\& (x_{2} _||! x_{2} _) \rightarrow x1
which follows from Equationalized Axiom 2.

Substitution Lemma 44

It can be shown that:
$\left(A[x 1]|\mid!\operatorname{Dnew}[x 1])=\left(R\left[x_{0}\right]| | \operatorname{Dnew}\left[x_{0}\right]\right)\right.$
Proof
We start by taking Substitution Lemma 33, and apply the substitution:
$\mathbf{x 1}$ _||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.

Substitution Lemma 45

It can be shown that:
$(A[x 1]|\mid!$ Dnew [$x 1])=\left(x_{0}| |!x_{0}\right)$
Proof
We start by taking Substitution Lemma 44, and apply the substitution:
$R\left[x 1_{-}\right] \mid$Dnew [$\left.x 1_{-}\right] \rightarrow x_{0}| |!x_{0}$
which follows from Substitution Lemma 42.
Critical Pair Lemma 22
The following expressions are equivalent:
(Dnew [x1] \&\&A [x1]) = (Dnew [x1]\&\& $\left.\left(x_{0}| |!x_{\theta}\right)\right)$
Proof
Note that the input for the rule:
! $x 1 _\& \&\left(x 2_{-}| | x 1_{-}\right) \rightarrow!x 1 \& \& x 2$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
A[x1_] ||!Dnew[x1_] $\rightarrow x_{0}| |!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 45 respectively.
Substitution Lemma 46
It can be shown that:
(Dnew [x1] \&\&A [x1] $)=\left(\operatorname{Dnew}[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 22, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 47
It can be shown that:
(Dnew [x1] \&\&A [x1]) ==Dnew [x1]
Proof
We start by taking Substitution Lemma 46, and apply the substitution:

which follows from Equationalized Axiom 2.
Substitution Lemma 48
It can be shown that:
(Dnew [x1] \&\&A [x1]) ==Dnew [x1]
Proof
We start by taking Substitution Lemma 47, and apply the substitution:
x1_ \rightarrow x1
which follows from Substitution Lemma 32.
Substitution Lemma 49
It can be shown that:
(A [x1] \&\&Dnew [x1]) ==Dnew [x1]
Proof
We start by taking Substitution Lemma 48, and apply the substitution:

$\mathrm{x} 1 _\& \& \mathrm{x} \mathbf{2}_{-} \rightarrow \mathrm{x} 2 \& \& \mathrm{x} 1$

which follows from Equationalized Axiom 16.
Substitution Lemma 50
It can be shown that:
(Nnew [x1] ||!L[x1]) =(A[$\left.x_{0}\right]\left|\mid!\right.$ Dnew [$\left.x_{0}\right]$)
Proof
We start by taking Substitution Lemma 34, and apply the substitution:

whirh follnus frnm Framatinnalized syinm 2

Substitution Lemma 51

It can be shown that:
(Nnew [x1] ||!L[x1]) $=\left(x_{0}| |!x_{0}\right)$
Proof
We start by taking Substitution Lemma 50, and apply the substitution:
A [x1_] ||!Dnew [x1_] $\rightarrow \mathrm{x}_{\boldsymbol{0}}| |!\mathrm{x}_{\boldsymbol{0}}$
which follows from Substitution Lemma 45.

Critical Pair Lemma 23

The following expressions are equivalent:
$(L[x 1] \& \& N n e w[x 1])=\left(L[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
Note that the input for the rule:
$!\times 1 _\& \&\left(x 2_{1}| | x 1 _\right) \rightarrow!x 1 \& \& x 2$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
Nnew [x1_] ||! L[x1_] $\rightarrow \mathrm{X}_{\boldsymbol{0}}| |!\mathrm{x}_{\boldsymbol{0}}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 51 respectively.

Substitution Lemma 52

It can be shown that:
$(L[x 1] \& \& N n e w[x 1])=\left(L[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 23, and apply the substitution:
$\mathbf{x 1}$ _ \rightarrow x1
which follows from Substitution Lemma 32.
Substitution Lemma 53
It can be shown that:
(L [x1] \&\&Nnew [x1]) =-L [x1]
Proof
We start by taking Substitution Lemma 52, and apply the substitution:
$\mathbf{x 1 _ \& \& ~ (x 2 _ | | ! x 2 _) ~} \rightarrow \mathbf{x} \mathbf{1}$
which follows from Equationalized Axiom 2.
Substitution Lemma 54
It can be shown that:
(L [x1] \&\&Nnew [x1] $)=\mathrm{L}$ [x1]
Donne

I ruvi
We start by taking Substitution Lemma 53, and apply the substitution:
x1_ \rightarrow x1
which follows from Substitution Lemma 32.
Substitution Lemma 55
It can be shown that:
$\left(B[x 1]|\mid!K[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)\right.$
Proof
We start by taking Substitution Lemma 35, and apply the substitution:

which follows from Equationalized Axiom 3.

Substitution Lemma 56

It can be shown that:

```
(B[x1]||!K[x1]) == ( }\mp@subsup{\textrm{X}}{0}{}||!\mp@subsup{x}{0}{}
```

Proof
We start by taking Substitution Lemma 55, and apply the substitution:

```
A[x1_]||!Dnew[x1_] }->\mp@subsup{x}{0}{}||!\mp@subsup{x}{0}{
```

which follows from Substitution Lemma 45.

Critical Pair Lemma 24

The following expressions are equivalent:
$(K[x 1] \& \& B[x 1])=\left(K[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
Note that the input for the rule:
! x1_\&\& (x2_||x1_) \rightarrow ! x1\&\&x2
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
$B\left[x 1_{-}\right]\left|\left|!K\left[x 1_{-}\right] \rightarrow x_{0}\right|\right|!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 56 respectively.
Substitution Lemma 57
It can be shown that:
$(K[x 1] \& \& B[x 1])=\left(K[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 24, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Sıhctitıtinn I amma 58

It can be shown that:
($\mathrm{K}[\mathrm{x} 1] \& \& \mathrm{~B}[\mathrm{x} 1]$) $=\mathrm{K}[\mathrm{x} 1]$
Proof
We start by taking Substitution Lemma 57, and apply the substitution:
$x 1 _\& \&\left(x 2^{2}| |!x 2_{-}\right) \rightarrow x 1$
which follows from Equationalized Axiom 2.
Substitution Lemma 59
It can be shown that:
$(K[x 1] \& \& B[x 1])=K[x 1]$
Proof
We start by taking Substitution Lemma 58, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.

Substitution Lemma 60

It can be shown that:
$(B[x 1] \& \& K[x 1])==K[x 1]$
Proof
We start by taking Substitution Lemma 59, and apply the substitution:

$x 1 _\& \& x 2_{-} \rightarrow x 2 \& \& x 1$

which follows from Equationalized Axiom 16.
Substitution Lemma 61
It can be shown that:
(Cnew [x1] ||!Enew [x1]) = (A [x_{0}]||!Dnew [X_{0}])
Proof
We start by taking Substitution Lemma 36, and apply the substitution:

which follows from Equationalized Axiom 3.
Substitution Lemma 62
It can be shown that:
(Cnew [x1] ||!Enew [x1] $)=\left(x_{0}| |!x_{0}\right)$
Proof
We start by taking Substitution Lemma 61, and apply the substitution:
A[x1_] ||!Dnew[x1_] $\rightarrow x_{0}| |!x_{0}$
which follows from Substitution Lemma 45.
Critical Pair Lemma 25

The following expressions are equivalent:
(Enew [x1] \&\&Cnew [x1]) == (Enew [x1] \&\& ($\left.\mathrm{x}_{0}| |!\mathrm{x}_{0}\right)$)
Proof
Note that the input for the rule:
! $x 1 _\& \&\left(x 2_{1}| | x 1 _\right) \rightarrow!x 1 \& \& x 2$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
Cnew [x1_] ||!Enew[x1_] $\rightarrow x_{0}| |!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 62 respectively.
Substitution Lemma 63
It can be shown that:
(Enew [x1] \&\&Cnew [x1]) == (Enew [x1]\&\& ($\left.\mathrm{x}_{0}| |!\mathrm{x}_{0}\right)$)
Proof
We start by taking Critical Pair Lemma 25, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 64
It can be shown that:
(Enew [x1] \&\&Cnew [x1]) =-Enew [x1]
Proof
We start by taking Substitution Lemma 63, and apply the substitution:

```
x1_&&(x2_||!x2_) }->\textrm{x}
```

which follows from Equationalized Axiom 2.

Substitution Lemma 65

It can be shown that:
(Enew [x1] \&\&Cnew [x1]) ==Enew [x1]
Proof
We start by taking Substitution Lemma 64, and apply the substitution:
$\mathbf{x 1} \rightarrow \mathbf{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 66
It can be shown that:
(Cnew [x1] \&\&Enew [x1]) =-Enew [x1]
Proof
We start by taking Substitution Lemma 65, and apply the substitution:

$\mathbf{x 1 _ \& \& X 2 _ \rightarrow X 2 \& \& x 1}$

which follows from Equationalized Axiom 16.

Substitution Lemma 67

It can be shown that:

Proof
We start by taking Substitution Lemma 37, and apply the substitution:
x1_||x2_ \rightarrow x2||x1
which follows from Equationalized Axiom 3.
Substitution Lemma 68
It can be shown that:
(Enew[x1] ||!R[x1])=($\left.x_{0}| |!x_{0}\right)$
Proof
We start by taking Substitution Lemma 67, and apply the substitution:
A[x1_] ||!Dnew[x1_] $\rightarrow x_{0}| |!x_{0}$
which follows from Substitution Lemma 45.
Critical Pair Lemma 26
The following expressions are equivalent:
$(R[x 1] \& \& E n e w[x 1])=\left(R[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
Note that the input for the rule:
! x1_\&\& (x2_||x1_) \rightarrow ! x1\&\&x2
contains a subpattern of the form:
$\mathbf{x 2}$ _||x1_
which can be unified with the input for the rule:
Enew [x1_] ||!R[x1_] $\rightarrow x_{0}| |!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 68 respectively.

Substitution Lemma 69

It can be shown that:
$(R[x 1] \& \& E n e w[x 1])=\left(R[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 26, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 70
It can be shown that:
onr..ntoor..........t. nr...t

Proof
We start by taking Substitution Lemma 69, and apply the substitution:

which follows from Equationalized Axiom 2.

Substitution Lemma 71

It can be shown that:
($\mathrm{R}[\mathrm{x} 1]$ \&\&Enew $[\mathrm{x} 1]$) $=\mathrm{R}$ [x1]
Proof
We start by taking Substitution Lemma 70, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 72
It can be shown that:
(Enew [x1] \&\&R [x1]) =: $\mathrm{R}[\mathrm{x} 1]$
Proof
We start by taking Substitution Lemma 71, and apply the substitution:

$\mathrm{x} 1 _\& \& \mathrm{x} \mathbf{2}_{-} \rightarrow \mathrm{x} 2 \& \& \mathrm{x} 1$

which follows from Equationalized Axiom 16.
Substitution Lemma 73
It can be shown that:
$\left(\mathrm{K}[\mathrm{x} 1]|\mid!\right.$ Cnew [x1] $)=\left(\mathrm{A}\left[\mathrm{x}_{0}\right]| |\right.$!Dnew [$\left.\left.\mathrm{x}_{0}\right]\right)$
Proof
We start by taking Substitution Lemma 38, and apply the substitution:

which follows from Equationalized Axiom 3.
Substitution Lemma 74
It can be shown that:
$(K[x 1]|\mid!$ Cnew [$x 1])=\left(x_{0}| |!x_{0}\right)$
Proof
We start by taking Substitution Lemma 73, and apply the substitution:

```
A[x1_]||!Dnew[x1_] }->\mp@subsup{x}{0}{}||!\mp@subsup{x}{0}{
```

which follows from Substitution Lemma 45.
Critical Pair Lemma 27
The following expressions are equivalent:
$($ Cnew [x1] \&\&K [x1] $)=\left(\right.$ Cnew [x1] \&\& $\left.\left(x_{0}| |!x_{0}\right)\right)$

Proof

Note that the input for the rule:
! x1_\&\& (x2_||x1_) \rightarrow ! x1\&\&x2
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
$K\left[x 1_{-}\right]\left|\mid!\right.$Cnew [$\left.x 1_{-}\right] \rightarrow x_{0}| |!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 74 respectively.

Substitution Lemma 75

It can be shown that:
$($ Cnew [x1] \&\&K [x1] $)=\left(\right.$ Cnew [x1] \&\& $\left.\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 27, and apply the substitution:
$\mathbf{x 1}$ _ $\rightarrow \mathbf{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 76
It can be shown that:
(Cnew [x1] \&\&K [x1]) ==Cnew [x1]
Proof
We start by taking Substitution Lemma 75, and apply the substitution:
$\mathbf{x 1}$ _\& $\&\left(x 2_{-}| |!x 2_{-}\right) \rightarrow \mathbf{x} \mathbf{1}$
which follows from Equationalized Axiom 2.
Substitution Lemma 77
It can be shown that:
(Cnew [x1] \&\&K [x1]) ==Cnew [x1]
Proof
We start by taking Substitution Lemma 76, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.

Substitution Lemma 78

It can be shown that:
$\left(L[x 1]|\mid!M[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)\right.$
Proof
We start by taking Substitution Lemma 39, and apply the substitution:

which follows from Equationalized Axiom 3.

Substitution Lemma 79

It can be shown that:

```
(L[x1]||!M[x1] ) == ( }\mp@subsup{x}{0}{0}||!\mp@subsup{x}{0}{}
```

Proof
We start by taking Substitution Lemma 78, and apply the substitution:
A [x1_] ||!Dnew [x1_] $\rightarrow \mathrm{x}_{\boldsymbol{0}}| |!\mathrm{x}_{\boldsymbol{0}}$
which follows from Substitution Lemma 45.
Critical Pair Lemma 28
The following expressions are equivalent:
$(M[x 1] \& \& L[x 1])=\left(M[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
Note that the input for the rule:
! x1_\&\& (x2_||x1_) \rightarrow ! x1\&\&x2
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
L[x1_] ||!M[x1_] $\rightarrow x_{0}| |!x_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 79 respectively.
Substitution Lemma 80
It can be shown that:
$(M[x 1] \& \& L[x 1])=\left(M[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
We start by taking Critical Pair Lemma 28, and apply the substitution:
$\mathbf{x 1} \rightarrow \mathbf{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 81
It can be shown that:
(M[x1]\&\&L[x1]) $==M[x 1]$
Proof
We start by taking Substitution Lemma 80, and apply the substitution:
$\mathbf{x 1 _ \& \&}\left(x_{2} _| |!x 2_{-}\right) \rightarrow \mathbf{x} 1$
which follows from Equationalized Axiom 2.
Substitution Lemma 82
It can be shown that:
($M[\mathrm{x} 1] \& \& \mathrm{~L}[\mathrm{x} 1]$) $=\mathrm{M}[\mathrm{x} 1]$
Proof

We start by taking Substitution Lemma 81, and apply the substitution:
$\mathbf{x 1} \rightarrow \mathbf{x} 1$
which follows from Substitution Lemma 32.
Substitution Lemma 83
It can be shown that:
$(L[x 1] \& \& M[x 1])=M[x 1]$
Proof
We start by taking Substitution Lemma 82, and apply the substitution:

$\mathbf{x 1 _ \& \& x 2 _ \rightarrow x 2 \& \& x 1}$

which follows from Equationalized Axiom 16.
Substitution Lemma 84
It can be shown that:
$\left(M[x 1]|\mid!B[x 1])=\left(A\left[x_{0}\right]| |!\operatorname{Dnew}\left[x_{0}\right]\right)\right.$
Proof
We start by taking Substitution Lemma 40, and apply the substitution:
$\mathbf{x 1}$ _||x2_ $\rightarrow \mathbf{x} \mathbf{2 | | x 1}$
which follows from Equationalized Axiom 3.
Substitution Lemma 85
It can be shown that:
$\left(M[x 1]|\mid!B[x 1])=\left(x_{0}| |!x_{0}\right)\right.$
Proof
We start by taking Substitution Lemma 84, and apply the substitution:
A[x1_] ||!Dnew[x1_] $\rightarrow x_{0}| |!x_{0}$
which follows from Substitution Lemma 45.
Critical Pair Lemma 29
The following expressions are equivalent:
$(B[x 1] \& \& M[x 1])=\left(B[x 1] \& \&\left(x_{0}| |!x_{0}\right)\right)$
Proof
Note that the input for the rule:
! $x 1 _\& \&\left(x 2_{-}| | x 1 _\right) \rightarrow!x 1 \& \& x 2$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
$\mathbf{M}\left[\mathbf{x} 1_{-}\right]\left|\left|!\mathrm{B}\left[\mathrm{x} \mathbf{1}_{\mathbf{\prime}}\right] \rightarrow \mathrm{x}_{0}\right|\right|!\mathrm{x}_{0}$
where these rules follow from Critical Pair Lemma 19 and Substitution Lemma 85 respectively.
Substitution Lemma 86

It can be shown that:
$(B[x 1] \& \& M[x 1])=\left(B[x 1] \& \&\left(x_{0}| |!x_{\theta}\right)\right)$
Proof
We start by taking Critical Pair Lemma 29, and apply the substitution:
$\mathbf{x 1} \rightarrow \mathbf{x 1}$
which follows from Substitution Lemma 32.
Substitution Lemma 87
It can be shown that:
$(B[x 1] \& \& M[x 1])=B[x 1]$
Proof
We start by taking Substitution Lemma 86, and apply the substitution:

```
x1_&&(x2_||! x2_) }->\textrm{x}
```

which follows from Equationalized Axiom 2.

Substitution Lemma 88

It can be shown that:
(B[x1]\&\& [x1]) $=\mathrm{B}[\mathrm{x} 1]$

Proof

We start by taking Substitution Lemma 87, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.
Critical Pair Lemma 30
The following expressions are equivalent:
$(R[x 1]|\mid A[x 1])=(R[x 1]| | \operatorname{Dnew}[x 1])$
Proof
Note that the input for the rule:
$R\left[x 1 _\right]\left|\left|\left(x 2_{-} \& \& D n e w\left[x 1 _\right]\right) \rightarrow R[x 1]\right|\right| x 2$
contains a subpattern of the form:
x2_\&\&Dnew [x1_]
which can be unified with the input for the rule:
A [x1_] \&\&Dnew [x1_] \rightarrow Dnew [x1]
where these rules follow from Substitution Lemma 43 and Substitution Lemma 49 respectively.
Substitution Lemma 89
It can be shown that:
$\left(R[x 1]|\mid A[x 1])=\left(x_{\theta}| |!x_{\theta}\right)\right.$
Proof
We start by taking Critical Pair Lemma 30, and apply the substitution:

which follows from Substitution Lemma 42.
Substitution Lemma 90
It can be shown that:
$\left(A[x 1]|\mid R[x 1])=\left(x_{0}| |!x_{0}\right)\right.$
Proof
We start by taking Substitution Lemma 89, and apply the substitution:
x1_||x2_ \rightarrow x $2|\mid x 1$
which follows from Equationalized Axiom 3.

Critical Pair Lemma 31

The following expressions are equivalent:
$\left(A[x 1]|\mid(x 2 \& \& R[x 1]))=\left((A[x 1]| | x 2) \& \&\left(x_{0}| |!x_{0}\right)\right)\right.$
Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{_}\right) \& \&\left(x 1_{_}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_l|x3_
which can be unified with the input for the rule:
$A\left[x 1_{-}\right]\left|\left|R\left[x 1_{-}\right] \rightarrow x_{0}\right|\right|!x_{0}$
where these rules follow from Equationalized Axiom 4 and Substitution Lemma 90 respectively.
Substitution Lemma 91
It can be shown that:
$(A[x 1]|\mid(x 2 \& \& R[x 1]))=(A[x 1]| | x 2)$
Proof
We start by taking Critical Pair Lemma 31, and apply the substitution:
$\mathbf{x 1 _ \& \& ~ (x 2 _ | | ! ~} \mathbf{x 2}_{\mathbf{2}}$) $\rightarrow \mathbf{x 1}$
which follows from Equationalized Axiom 2.
Critical Pair Lemma 32
The following expressions are equivalent:
$(A[x 1]|\mid E n e w[x 1])=(A[x 1]| | R[x 1])$
Proof
Note that the input for the rule:
$A\left[x 1 _\right]\left|\left|\left(x 2_{-} \& \& R\left[x 1 _\right]\right) \rightarrow A[x 1]\right|\right| x 2$
contains a subpattern of the form:
x2_\&\&R[x1_]
which can be unified with the input for the rule:
Enew [x1_] \&\&R[x1_] $\rightarrow R[x 1]$
where these rules follow from Substitution Lemma 91 and Substitution Lemma 72 respectively.
Substitution Lemma 92
It can be shown that:
(A[x1] ||Enew [x1] $)=\left(x_{\theta}| |!x_{\theta}\right)$
Proof
We start by taking Critical Pair Lemma 32, and apply the substitution:
$A\left[x 1_{-}\right]\left|\left|R\left[x 1_{-}\right] \rightarrow x_{0}\right|\right|!x_{0}$
which follows from Substitution Lemma 90.
Critical Pair Lemma 33
The following expressions are equivalent:
$\left(A[x 1]|\mid(x 2 \& \& E n e w[x 1]))=\left((A[x 1]| | x 2) \& \&\left(x_{0}| |!x_{0}\right)\right)\right.$
Proof
Note that the input for the rule:

```
(x1_| |x2_)&&(x1_| |x3_) ->x1 | (x2&&x3)
```

contains a subpattern of the form:
x1_||x3_
which can be unified with the input for the rule:

```
A[x1_]||Enew[x1_] }->\mp@subsup{x}{0}{0}||!\mp@subsup{x}{0}{
```

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 92 respectively.
Substitution Lemma 93

It can be shown that:
$(A[x 1]|\mid(x 2 \& \& E n e w[x 1]))=(A[x 1]| | x 2)$
Proof
We start by taking Critical Pair Lemma 33, and apply the substitution:
$x x_{1} \& \&\left(x 2_{1}| |!x 2_{-}\right) \rightarrow x 1$
which follows from Equationalized Axiom 2.
Critical Pair Lemma 34
The following expressions are equivalent:
$(A[x 1]|\mid$ Cnew [x1] $)=(A[x 1]| |$ Enew [x1] $)$
Proof
Note that the input for the rule:
$\mathrm{A}\left[\mathrm{x} 1 _\right]\left|\left|\left(x 2_{\text {_ }} \& \& E n e w\left[\mathrm{x} 1 _\right]\right) \rightarrow \mathbf{A}[\mathrm{x} 1]\right|\right| \mathrm{x} 2$
contains a subpattern of the form:
x2_\&\&Enew [x1_]
which can be unified with the input for the rule:

Cnew [x1_] \&\&Enew [x1_] \rightarrow Enew [x1]

Substitution Lemma 94

It can be shown that:

```
(A[x1] || Cnew [x1]) == (x0||! (x)
```

Proof
We start by taking Critical Pair Lemma 34, and apply the substitution:
A[x1_]||Enew[x1_] $\rightarrow x_{0}| |!x_{0}$
which follows from Substitution Lemma 92.

Critical Pair Lemma 35

The following expressions are equivalent:

```
(A [x1]||(Cnew [x1]&&x2)) == (( }\mp@subsup{\textrm{x}}{0}{}||!\mp@subsup{x}{0}{})&&(A[x1]||2)
```

Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{_}\right) \& \&\left(x 1_{_}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x2_
which can be unified with the input for the rule:
$A\left[x 1_{-}\right]\left|\mid\right.$Cnew [$\left.x 1_{\mathbf{1}}\right] \rightarrow x_{0}| |!x_{0}$
where these rules follow from Equationalized Axiom 4 and Substitution Lemma 94 respectively.

Substitution Lemma 95

It can be shown that:
$(A[x 1]|\mid($ Cnew $[x 1] \& \& x 2))=(A[x 1]| | x 2)$
Proof
We start by taking Critical Pair Lemma 35, and apply the substitution:
$\left(x 1_{-}| |!x 1_{-}\right) \& \& x 2_{-} \rightarrow \mathbf{x} \mathbf{2}$
which follows from Critical Pair Lemma 6.
Critical Pair Lemma 36
The following expressions are equivalent:
$(A[x 1]|\mid K[x 1])=(A[x 1]| |$ Cnew [x1] $)$
Proof
Note that the input for the rule:
A [x1_] ||(Cnew[x1_]\&\&x2_) $\rightarrow \mathrm{A}[\mathrm{x} 1]|\mid \mathrm{x} 2$
contains a subpattern of the form:
Cnew[x1_]\&\&x2_
which can be unified with the input for the rule:

Cnew [x1_] \&\&K[x1_] \rightarrow Cnew [x1]

where these rules follow from Substitution Lemma 95 and Substitution Lemma 77 respectively.

Substitution Lemma 96

It can be shown that:
$\left(A[x 1]|\mid K[x 1])=\left(x_{\theta}| |!x_{\theta}\right)\right.$
Proof
We start by taking Critical Pair Lemma 36, and apply the substitution:
A[x1_] ||Cnew[x1_] $\rightarrow \mathrm{x}_{0}| |!\mathrm{x}_{0}$
which follows from Substitution Lemma 94.

Critical Pair Lemma 37

The following expressions are equivalent:
$\left(A[x 1]|\mid(K[x 1] \& \& x 2))=\left(\left(x_{0}| |!x_{0}\right) \& \&(A[x 1]| | x 2)\right)\right.$
Proof
Note that the input for the rule:
$\left(x 1_{-}| | x 2_{_}\right) \& \&\left(x 1_{-}| | x 3_{-}\right) \rightarrow x 1|\mid(x 2 \& \& x 3)$
contains a subpattern of the form:
x1_||x2_
which can be unified with the input for the rule:
$\mathbf{A}\left[\mathbf{x} \mathbf{1}_{\mathbf{\prime}}\right]\left|\left|\mathrm{K}\left[\mathbf{x} \mathbf{1}_{\mathbf{\prime}}\right] \rightarrow \mathbf{x}_{\boldsymbol{0}}\right|\right|!\mathbf{x}_{\boldsymbol{0}}$
where these rules follow from Equationalized Axiom 4 and Substitution Lemma 96 respectively.

Substitution Lemma 97

It can be shown that:
$(A[x 1]|\mid(K[x 1] \& \& x 2))=(A[x 1]| | x 2)$
Proof
We start by taking Critical Pair Lemma 37, and apply the substitution:
(x1_||!x1_) \&\&x2_ \rightarrow x $\mathbf{2}$
which follows from Critical Pair Lemma 6.
Substitution Lemma 98
It can be shown that:
$(x 1|\mid(x 2 \& \& x 3 \& \&!x 3))=(x 1 \& \&(x 1| | x 2))$
Proof
We start by taking Critical Pair Lemma 3, and apply the substitution:

$x 1 _\& \& x 2 _\rightarrow x 2 \& \& x 1$

which follows from Equationalized Axiom 16.
Critical Pair Lemma 38
The following expressions are equivalent:
$(x 1 \& \&(x 1|\mid x 2))=(x 1| |(x 2 \& \&!x 2))$
Proof

Note that the input for the rule:
x1_||(x2_\&\&x3_\&\&!x3_) ↔x1_\&\& (x1_||x2_)
contains a subpattern of the form:
x2_\&\&x3_\&\&! x3_
which can be unified with the input for the rule:
$x 1 _\& \& x 1 _\& \& x 2_{-} \rightarrow x 1 \& \& x 2$
where these rules follow from Substitution Lemma 98 and Substitution Lemma 41 respectively.
Substitution Lemma 99
It can be shown that:
(x1\&\& (x1||x2)) =x1
Proof
We start by taking Critical Pair Lemma 38, and apply the substitution:
x1_||(x2_\&\&! x_{2}) $\rightarrow \mathrm{x} 1$
which follows from Equationalized Axiom 1.
Substitution Lemma 100
It can be shown that:
$x 1_{\text {_ }}| |\left(x 2_{-} \& \& x 1_{-}\right) \rightarrow x 1$
Proof
We start by taking Substitution Lemma 27, and apply the substitution:
$x 1 _\& \&\left(x 1_{-}| | x 2_{-}\right) \rightarrow x 1$
which follows from Substitution Lemma 99.

Substitution Lemma 101

It can be shown that:
$x 1 _| |\left(x 1 _\& \& x 2_{-}\right) \rightarrow x 1$
Proof
We start by taking Critical Pair Lemma 11, and apply the substitution:
$x 1 _\& \&\left(x 1 _| | x 2_{-}\right) \rightarrow x 1$
which follows from Substitution Lemma 99.
Critical Pair Lemma 39
The following expressions are equivalent:
$x 1=(x 1 \& \&(x 2| | x 1))$
Proof
Note that the input for the rule:
$\mathbf{x 1 _ \& \& ~ (x 1 _ | | x 2 _) ~} \rightarrow \mathbf{x} \mathbf{1}$
contains a subpattern of the form:
x1_||x2_

where these rules follow from Substitution Lemma 99 and Equationalized Axiom 3 respectively.
Critical Pair Lemma 40
The following expressions are equivalent:
$(x 1 \& \&(x 2||x 1|| x 3))=(x 1| |(x 1 \& \& x 3))$
Proof
Note that the input for the rule:
$\left(x 1_{1} \& \& x 2_{-}\right)\left|\mid\left(x 1 _\& \& x 3 _\right) \rightarrow x 1 \& \&(x 2| | x 3)\right.$
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:
$\mathbf{x 1 _ \& \& ~ (x 2 _ | | x 1 _) ~} \rightarrow \mathbf{x 1}$
where these rules follow from Equationalized Axiom 15 and Critical Pair Lemma 39 respectively.
Substitution Lemma 102
It can be shown that:
$(x 1 \& \&(x 2||x 1|| x 3))=x 1$
Proof
We start by taking Critical Pair Lemma 40, and apply the substitution:
$\mathbf{x 1 _ \|} \mid\left(x 1_{-} \& \& x 2_{-}\right) \rightarrow x 1$
which follows from Substitution Lemma 101.

Critical Pair Lemma 41

The following expressions are equivalent:
$(x 1 \& \& x 2)=(x 1 \& \& x 2 \& \&(x 2| | x 3))$
Proof
Note that the input for the rule:
$x 1 _\& \&\left(x 2_{-}| | x 1_{-}| | x 3 _\right) \rightarrow x 1$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
Language`EquationalProofDump`getConstructRule [EquationalProof`ApplyLemma[2442, x1_\&\&(x1_l where these rules follow from Substitution Lemma 102 and Substitution Lemma 100 respectively.

Critical Pair Lemma 42
The following expressions are equivalent:
$(x 1 \& \& x 2)=(x 1 \& \& x 2 \& \&(x 1| | x 3))$
Proof
Note that the input for the rule:
$x 1 _\& \&\left(x 2^{2}| | x 1 _| | x 3 _\right) \rightarrow x 1$
contains a subpattern of the form:
x2_||x1_
which can be unified with the input for the rule:
Language`EquationalProofDump`getConstructRule [EquationalProof`ApplyLemma [2443, x1_\&\& (x1_l where these rules follow from Substitution Lemma 102 and Substitution Lemma 101 respectively.

Critical Pair Lemma 43
The following expressions are equivalent:
$(B[x 1] \& \& M[x 1])=(B[x 1] \& \&(M[x 1]| | x 2))$
Proof
Note that the input for the rule:
$x 1 _\& \& x_{2} \& \&\left(x 2_{2}| | x 3 _\right) \rightarrow x \mathbf{1 \& \& 2}$
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:
$\mathrm{B}\left[\mathrm{x} \mathbf{1}_{\text {_ }}\right] \& \& \mathrm{M}\left[\mathrm{x} 1_{-}\right] \rightarrow \mathrm{B}[\mathrm{x} 1]$
where these rules follow from Critical Pair Lemma 41 and Substitution Lemma 88 respectively.

Substitution Lemma 103

It can be shown that:
$B[x 1]=(B[x 1] \& \&(M[x 1]| | x 2))$
Proof
We start by taking Critical Pair Lemma 43, and apply the substitution:
$\mathrm{B}\left[\mathrm{x} 1\right.$ _] $\& \& \mathrm{M}\left[\mathrm{x} \mathbf{1}_{-}\right] \rightarrow \mathrm{B}[\mathrm{x} 1]$
which follows from Substitution Lemma 88.

Critical Pair Lemma 44

The following expressions are equivalent:
$(L[x 1] \& \& N n e w[x 1])=(L[x 1] \& \&(N n e w[x 1]| | x 2))$
Proof
Note that the input for the rule:
$x 1 _\& \& x 2 _\& \&\left(x 2^{2}| | x 3 _\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:
$L\left[x 1_{-}\right] \& \& N n e w\left[x 1_{-}\right] \rightarrow L[x 1]$
where these rules follow from Critical Pair Lemma 41 and Substitution Lemma 54 respectively.
Substitution Lemma 104
It can be shown that:

$\mathrm{L}[\mathrm{x} 1]=(\mathrm{L}[\mathrm{x} 1] \& \&($ Nnew [x1] ||x2)$)$

Proof
We start by taking Critical Pair Lemma 44, and apply the substitution:
$\mathrm{L}[\mathrm{x} 1$ _] \& \& Nnew [x1_] $\rightarrow \mathrm{L}$ [x1]
which follows from Substitution Lemma 54.
Critical Pair Lemma 45
The following expressions are equivalent:
$(B[x 1] \& \& K[x 1])=(K[x 1] \& \&(B[x 1]| | x 2))$
Proof
Note that the input for the rule:
$x 1 _\& \& x 2 _\& \&\left(x 1 _| | x 3 _\right) \rightarrow x 1 \& \& x 2$
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:

$\mathrm{B}[\mathrm{x} 1$ _] $\& \& \mathrm{~K}[\mathrm{x} 1$ _] $\rightarrow \mathrm{K}[\mathrm{x} 1]$

where these rules follow from Critical Pair Lemma 42 and Substitution Lemma 60 respectively.
Substitution Lemma 105
It can be shown that:
$K[x 1]=(K[x 1] \& \&(B[x 1]| | x 2))$
Proof
We start by taking Critical Pair Lemma 45, and apply the substitution:
$\mathrm{B}[\mathrm{x} 1$ _] $\& \& \mathrm{~K}[\mathrm{x} 1$ _] $\rightarrow \mathrm{K}[\mathrm{x} 1$]
which follows from Substitution Lemma 60.

Critical Pair Lemma 46

The following expressions are equivalent:
$(L[x 1] \& \& M[x 1])=(M[x 1] \& \&(L[x 1]| | x 2))$
Proof
Note that the input for the rule:
$\mathrm{x} 1 _\& \& \mathrm{x}_{2}$ \&\& $\left(\mathrm{x} 1 _| | \mathrm{x} 3 _\right) \rightarrow \mathrm{x} 1 \& \& \mathrm{x} 2$
contains a subpattern of the form:
x1_\&\&x2_
which can be unified with the input for the rule:
$L\left[x 1 _\right] \& \& M\left[x 1 _\right] \rightarrow M[x 1]$
where these rules follow from Critical Pair Lemma 42 and Substitution Lemma 83 respectively.
Substitution Lemma 106
It can be shown that:
Mrv1T__ /MrvitoorlrvitIIvつい

Proof
We start by taking Critical Pair Lemma 46, and apply the substitution:

which follows from Substitution Lemma 83.
Substitution Lemma 107
It can be shown that:
$(!H[x 1]| |(!N n e w[x 1] \& \& x 2))=\left(\left(x_{0}| |!x_{0}\right) \& \&(!H[x 1]| | x 2)\right)$
Proof
We start by taking Critical Pair Lemma 4, and apply the substitution:
A [x1_] ||!Dnew [x1_] $\rightarrow \mathrm{x}_{\boldsymbol{0}}| |!\mathrm{x}_{\boldsymbol{0}}$
which follows from Substitution Lemma 45.
Substitution Lemma 108
It can be shown that:
$(!H[x 1]| |(!N n e w[x 1] \& \& x 2))=(!H[x 1]| | x 2)$
Proof
We start by taking Substitution Lemma 107, and apply the substitution:
$\left(x 1_{_}| |!x 1_{-}\right) \& \& x 2_{-} \rightarrow \mathbf{x} \mathbf{2}$
which follows from Critical Pair Lemma 6.

Critical Pair Lemma 47

The following expressions are equivalent:
$(!H[x 1]| | N n e w[x 1])=: H[x 1]$
Proof
Note that the input for the rule:
$!H\left[x 1_{-}\right]| |\left(!\right.$Nnew [x1_] $\left.\& \& x \mathbf{2}_{-}\right) \rightarrow!H[x 1]| | x 2$
contains a subpattern of the form:
! H [$\mathbf{x 1}$ _] || (! Nnew [x1_]\&\&x2_)
which can be unified with the input for the rule:
x1_|| (x2_\&\&! x_{2} _) $\rightarrow \mathbf{x 1}$
where these rules follow from Substitution Lemma 108 and Equationalized Axiom 1 respectively.
Substitution Lemma 109
It can be shown that:
$(!H[x 1]| | N n e w[x 1])=: H[x 1]$
Proof
We start by taking Critical Pair Lemma 47, and apply the substitution:
$\mathrm{x} 1_{-} \rightarrow \mathrm{x} 1$
which follows from Substitution Lemma 32.

Substitution Lemma 110

It can be shown that:
(Nnew [x1] ||! $\mathrm{H}[\mathrm{x} 1]$) $=\mathbf{=} \mathrm{H}[\mathrm{x} 1]$
Proof
We start by taking Substitution Lemma 109, and apply the substitution:
x1_||x2_ $\mathbf{x} \times 2| | x 1$
which follows from Equationalized Axiom 3.

Critical Pair Lemma 48

The following expressions are equivalent:
$\mathrm{L}[\mathrm{x} 1]=(\mathrm{L}[\mathrm{x} 1] \& \&!\mathrm{H}[\mathrm{x} 1])$
Proof
Note that the input for the rule:
$L\left[x 1_{-}\right] \& \&\left(N n e w\left[x 1_{-}\right]\left|\mid x 2_{-}\right) \rightarrow L[x 1]\right.$
contains a subpattern of the form:
Nnew[x1_] ||x2_
which can be unified with the input for the rule:
Nnew [x1_] ||!H[x1_] \rightarrow ! $\mathrm{H}[\mathrm{x} 1]$
where these rules follow from Substitution Lemma 104 and Substitution Lemma 110 respectively.

Critical Pair Lemma 49

The following expressions are equivalent:
$(!H[x 1])=(!H[x 1]| | L[x 1])$
Proof
Note that the input for the rule:

Language`EquationalProofDump`getConstructRule [EquationalProof`ApplyLemma [2442, x1_\&\&(x1_।

contains a subpattern of the form:
x2_\&\&x1_
which can be unified with the input for the rule:
$\mathrm{L}\left[\mathrm{x} 1_{-}\right] \& \&!\mathrm{H}\left[\mathrm{x} \mathbf{1}_{\mathbf{\prime}}\right] \rightarrow \mathrm{L}[\mathrm{x} 1]$
where these rules follow from Substitution Lemma 100 and Critical Pair Lemma 48 respectively.
Substitution Lemma 111
It can be shown that:
$(!H[x 1])=(L[x 1]| |!H[x 1])$
Proof
We start by taking Critical Pair Lemma 49, and apply the substitution:
$\mathbf{x 1}$ _||x2_ $\mathbf{x} \mathbf{x} \mathbf{2 | | x 1}$
which follows from Equationalized Axiom 3.

Critical Pair Lemma 50

The following expressions are equivalent:
$M[x 1]=(M[x 1] \& \&!H[x 1])$
Proof
Note that the input for the rule:
$M\left[x 1_{-}\right] \& \&\left(L\left[x 1_{-}\right]\left|\mid x 2_{-}\right) \rightarrow M[x 1]\right.$
contains a subpattern of the form:
L[x1_]||x2_
which can be unified with the input for the rule:
L[x1_] ||! $\mathrm{H}[\mathrm{x} 1$ _] \rightarrow ! $\mathrm{H}[\mathrm{x} 1]$
where these rules follow from Substitution Lemma 106 and Substitution Lemma 111 respectively.
Critical Pair Lemma 51
The following expressions are equivalent:
$(!H[x 1])=(!H[x 1]| | M[x 1])$
Proof
Note that the input for the rule:
Language` EquationalProofDump` getConstructRule [EquationalProof`ApplyLemma [2442, x1_\&\& (x1_।
contains a subpattern of the form:
x2_\&\&x1_
which can be unified with the input for the rule:

$M\left[x 1 _\right] \& \&!H\left[x 1_{-}\right] \rightarrow M[x 1]$

where these rules follow from Substitution Lemma 100 and Critical Pair Lemma 50 respectively.
Substitution Lemma 112
It can be shown that:
($!\mathrm{H}[\mathrm{x} 1]$) $=(\mathrm{M}[\mathrm{x} 1]| |!\mathrm{H}[\mathrm{x} 1])$
Proof
We start by taking Critical Pair Lemma 51, and apply the substitution:
$x x_{1}| | x 2_{-} \rightarrow \mathrm{x} 2| | x 1$
which follows from Equationalized Axiom 3.

Critical Pair Lemma 52

The following expressions are equivalent:
$B[x 1]=(B[x 1] \& \&!H[x 1])$
Proof
Note that the input for the rule:
$B\left[x 1_{-}\right] \& \&\left(M\left[x 1_{-}\right]\left|\mid x 2_{-}\right) \rightarrow B[x 1]\right.$
contains a subpattern of the form:
M[x1_]||x2_
which can be unified with the input for the rule:
M[x1_] ||! H [x1_] \rightarrow ! H [x1]
where these rules follow from Substitution Lemma 103 and Substitution Lemma 112 respectively.

Critical Pair Lemma 53

The following expressions are equivalent:
$(!H[x 1])=(!H[x 1]| | B[x 1])$
Proof
Note that the input for the rule:
Language` EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[2442, x1_\&\&(x1_I
contains a subpattern of the form:
x2_\&\&x1_
which can be unified with the input for the rule:
$B\left[x 1_{-}\right] \& \&!H\left[x 1_{-}\right] \rightarrow B[x 1]$
where these rules follow from Substitution Lemma 100 and Critical Pair Lemma 52 respectively.

Substitution Lemma 113

It can be shown that:
$(!H[x 1])=(B[x 1]| |!H[x 1])$
Proof
We start by taking Critical Pair Lemma 53, and apply the substitution:
x1_||x2_ $\mathbf{x} \mathbf{x}$ || $\mathbf{x 1}$
which follows from Equationalized Axiom 3.

Critical Pair Lemma 54

The following expressions are equivalent:
$K[x 1]=(K[x 1] \& \&!H[x 1])$
Proof
Note that the input for the rule:
$K\left[x 1_{-}\right] \& \&\left(B\left[x 1_{-}\right]\left|\mid x 2_{-}\right) \rightarrow K[x 1]\right.$
contains a subpattern of the form:
B[x1_]||x2_
which can be unified with the input for the rule:
B[x1_] ||! $\mathrm{H}[\mathrm{x} 1$ _] \rightarrow ! $\mathrm{H}[\mathrm{x} 1]$
where these rules follow from Substitution Lemma 105 and Substitution Lemma 113 respectively.
Critical Pair Lemma 55
The following expressions are equivalent:
$(A[x 1]|\mid!H[x 1])=(A[x 1]| | K[x 1])$
Proof

ivote mat tre mput ior me ruie:
$A\left[x 1_{-}\right]\left|\left|\left(K\left[x 1_{-}\right] \& \& x 2_{-}\right) \rightarrow A[x 1]\right|\right| x 2$
contains a subpattern of the form:
$K\left[x 1_{-}\right] \& \& x_{2}$
which can be unified with the input for the rule:
$K\left[x 1_{-}\right] \& \&!H\left[x 1_{-}\right] \rightarrow K[x 1]$
where these rules follow from Substitution Lemma 97 and Critical Pair Lemma 54 respectively.
Substitution Lemma 114
It can be shown that:
$\left(A[x 1]|\mid!H[x 1])=\left(x_{0}| |!x_{0}\right)\right.$
Proof
We start by taking Critical Pair Lemma 55, and apply the substitution:
$\mathrm{A}\left[\mathrm{x} \mathbf{1}_{\mathbf{\prime}}\right]\left|\left|\mathrm{K}\left[\mathrm{x} \mathbf{1}_{\mathbf{\prime}}\right] \rightarrow \mathrm{X}_{\boldsymbol{0}}\right|\right|!\mathrm{x}_{\boldsymbol{0}}$
which follows from Substitution Lemma 96.
Substitution Lemma 115
It can be shown that:
$\left(A\left[x_{\theta}\right]\left|\mid!H\left[x_{\theta}\right]\right)=\left(a_{0}| |!a_{\theta}\right)\right.$
Proof
We start by taking Equationalized Hypothesis 1, and apply the substitution:
$\mathbf{x 1}$ _||x2_ $\mathbf{~} \mathbf{x} \mathbf{2 | | x 1}$
which follows from Equationalized Axiom 3.

Substitution Lemma 116

It can be shown that:
$\left(A\left[X_{0}\right]\left|\mid!H\left[X_{0}\right]\right)=\left(X_{0}| |!X_{0}\right)\right.$
Proof
We start by taking Substitution Lemma 115, and apply the substitution:
$x 1_{-}| |!x_{1} \rightarrow x_{0}| |!x_{0}$
which follows from Critical Pair Lemma 9.

Conclusion 1

We obtain the conclusion:

True

Proof
Take Substitution Lemma 116, and apply the substitution:
$A\left[x 1_{-}\right]\left|\left|!H\left[x 1_{-}\right] \rightarrow x_{0}\right|\right|!x_{0}$
which follows from Substitution Lemma 114.

