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Introduction

Mathematica v12.1.0 (Wolfram Research 2020), released March 2020, contains an enhancement of 
Mathematica's equational-logic (McCune and Padmanabhan 1996) proof search function FindEquation-

alProof.  The enhancement automatically converts Mathematica first-order predicate logic (similar to 
Lemmon 1965, Chap. 3) expressions to equational logic (prior versions did not provide this conver-
sion).  The v12.1.0 distribution contains an example (Lewis Carroll's Puzzle Number 1 (1896) showcas-
ing the conversion capability.  The example proves that "Babies can't manage crocodiles", given:

(a)  All babies are illogical.
(b)  Nobody is despised who can manage a crocodile.
(c)  Illogical persons are despised.



I made minor modifications to the example provided in the Wolfram distribution; the results are shown 
below.

On the platform described above, Mathematica generates the entire proof in about 7 seconds.  

Executable code and results

In[1]:= proofBabyCantManageCrocs =

FindEquationalProof[Not[Exists[x, And[baby[x], manageCrocodile[x]]]],

{ForAll[x, Implies[baby[x], Not[logical[x]]]],

ForAll[x, Implies[manageCrocodile[x], Not[despised[x]]]],

ForAll[x, Implies[Not[logical[x]], despised[x]]]}]

Out[1]= ProofObject
Logic: Predicate/EquationalLogic Steps: 100
Theorem: ∀x ! (baby[x]&&manageCrocodile[x]) 

In[2]:= proofBabyCantManageCrocs["ProofNotebook"]

Axiom 1
We are given that:
∀xbaby[x]⇒!logical[x]

Axiom 2
We are given that:
∀xmanageCrocodile[x]⇒!despised[x]

Axiom 3
We are given that:
∀x!logical[x]⇒despised[x]

Hypothesis 1
We would like to show that:
∀x!baby[x]&&manageCrocodile[x]

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1⩵x1||x2&&!x2

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1⩵x1&&x2||!x2

Equationalized Axiom 3
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Equationalized Axiom 3
We generate the ''equationalized'' axiom:
x1||x2⩵x2||x1

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
x1||x2&&x3⩵x1||x2&&x1||x3

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
logical[x1]||despised[x1]⩵(a.0||!a.0)

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
!baby[x1]||!logical[x1]⩵(a.0||!a.0)

Equationalized Axiom 7
We generate the ''equationalized'' axiom:
!manageCrocodile[x1]||!despised[x1]⩵(a.0||!a.0)

Equationalized Axiom 8
We generate the ''equationalized'' axiom:
x1&&x2||x1&&x3⩵x1&&x2||x3

Equationalized Axiom 9
We generate the ''equationalized'' axiom:
x1&&x2⩵x2&&x1

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(a.0||!a.0)⩵!baby[x0]&&manageCrocodile[x0]

Critical Pair Lemma 1
The following expressions are equivalent:
x1&&!x1||x2⩵x2

PROOF

Note that the input for the rule:
x1_||x2_x2_||x1_

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_&&!x2_→x1

where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 2
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The following expressions are equivalent:
x1||x2&&!x1⩵x1||x2

PROOF

Note that the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

contains a subpattern of the form:
x1_||x2_&&x1_||x3_

which can be unified with the input for the rule:
x1_&&x2_||!x2_→x1

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 2 respectively.

Substitution Lemma 1
It can be shown that:
despised[x1]||logical[x1]⩵(a.0||!a.0)

PROOF

We start by taking Equationalized Axiom 5, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 2
It can be shown that:
!baby[x1]||!logical[x1]⩵despised[x0]||logical[x0]

PROOF

We start by taking Equationalized Axiom 6, and apply the substitution:
a.0||!a.0→despised[x0]||logical[x0]

which follows from Substitution Lemma 1.

Critical Pair Lemma 3
The following expressions are equivalent:
!baby[x1]||!logical[x1]&&x2⩵despised[x0]||logical[x0]&&!baby[x1]||x2

PROOF

Note that the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
!baby[x1_]||!logical[x1_]→despised[x0]||logical[x0]

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 2 respectively.

Substitution Lemma 3
It can be shown that:
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It can be shown that:
!manageCrocodile[x1]||!despised[x1]⩵despised[x0]||logical[x0]

PROOF

We start by taking Equationalized Axiom 7, and apply the substitution:
a.0||!a.0→despised[x0]||logical[x0]

which follows from Substitution Lemma 1.

Critical Pair Lemma 4
The following expressions are equivalent:
!manageCrocodile[x1]||!despised[x1]&&x2⩵despised[x0]||logical[x0]&&!manageCrocodile

PROOF

Note that the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
!manageCrocodile[x1_]||!despised[x1_]→despised[x0]||logical[x0]

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 3 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
x1&&x2||!x1⩵x1&&x2

PROOF

Note that the input for the rule:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

contains a subpattern of the form:
x1_&&x2_||x1_&&x3_

which can be unified with the input for the rule:
x1_||x2_&&!x2_→x1

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
x1||!x1&&x2⩵x2

PROOF

Note that the input for the rule:
x1_&&x2_x2_&&x1_

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1 &&x2 ||!x2 →x1
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_  _|| _

where these rules follow from Equationalized Axiom 9 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
x1&&x2||x3⩵x2&&x1||x1&&x3

PROOF

Note that the input for the rule:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 9 respectively.

Critical Pair Lemma 8
The following expressions are equivalent:
x1&&x2⩵x1&&!x1||x2

PROOF

Note that the input for the rule:
x1_&&!x1_||x2_→x2

contains a subpattern of the form:
x1_&&!x1_||x2_

which can be unified with the input for the rule:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 8 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
x1⩵x1&&!x2&&!x2

PROOF

Note that the input for the rule:
x1_&&x2_||!x2_→x1

contains a subpattern of the form:
x2_||!x2_

which can be unified with the input for the rule:
x1_&&!x1_||x2_→x2

where these rules follow from Equationalized Axiom 2 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 10
The following expressions are equivalent:
x1||x2 x1||!x1&&x2
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x1||x2⩵x1||!x1&&x2

PROOF

Note that the input for the rule:
x1_||!x1_&&x2_→x2

contains a subpattern of the form:
x1_||!x1_&&x2_

which can be unified with the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 11
The following expressions are equivalent:
x1||!x1⩵x2||!x2

PROOF

Note that the input for the rule:
x1_||!x1_&&x2_→x2

contains a subpattern of the form:
x1_||!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_||!x2_→x1

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 12
The following expressions are equivalent:
x1⩵x1||!x2||!x2

PROOF

Note that the input for the rule:
x1_||x2_&&!x2_→x1

contains a subpattern of the form:
x2_&&!x2_

which can be unified with the input for the rule:
x1_||!x1_&&x2_→x2

where these rules follow from Equationalized Axiom 1 and Critical Pair Lemma 6 respectively.

Critical Pair Lemma 13
The following expressions are equivalent:
x1||x1⩵x1

PROOF

Note that the input for the rule:
x1_||x2_&&!x1_→x1||x2

babies_crocs.nb     7



contains a subpattern of the form:
x1_||x2_&&!x1_

which can be unified with the input for the rule:
x1_||x2_&&!x2_→x1

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 14
The following expressions are equivalent:
x1||x1&&x2⩵x1&&x1||x2

PROOF

Note that the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x1_→x1

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 13 respectively.

Critical Pair Lemma 15
The following expressions are equivalent:
!logical[x1]&&despised[x1]⩵!logical[x1]&&(a.0||!a.0)

PROOF

Note that the input for the rule:
x1_&&x2_||!x1_→x1&&x2

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
"0"

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 1 respectively.

Substitution Lemma 4
It can be shown that:
!logical[x1]&&despised[x1]⩵!logical[x1]

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_&&x2_||!x2_→x1

which follows from Equationalized Axiom 2.

Critical Pair Lemma 16
The following expressions are equivalent:
x1&&x1⩵x1
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PROOF

Note that the input for the rule:
x1_&&!x1_||x2_→x1&&x2

contains a subpattern of the form:
x1_&&!x1_||x2_

which can be unified with the input for the rule:
x1_&&x2_||!x2_→x1

where these rules follow from Critical Pair Lemma 8 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 17
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||!x1_&&x2_→x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x1_→x1

where these rules follow from Critical Pair Lemma 10 and Critical Pair Lemma 16 respectively.

Substitution Lemma 5
It can be shown that:
despised[x1]&&!logical[x1]⩵!logical[x1]

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
x1_&&x2_→x2&&x1

which follows from Equationalized Axiom 9.

Critical Pair Lemma 18
The following expressions are equivalent:
logical[x1]||despised[x1]⩵logical[x1]||!logical[x1]

PROOF

Note that the input for the rule:
x1_||x2_&&!x1_→x1||x2

contains a subpattern of the form:
x2_&&!x1_

which can be unified with the input for the rule:
despised[x1_]&&!logical[x1_]→!logical[x1]

where these rules follow from Critical Pair Lemma 2 and Substitution Lemma 5 respectively.

babies_crocs.nb     9



Critical Pair Lemma 19
The following expressions are equivalent:
x1||!x1⩵!x2&&!x2

PROOF

Note that the input for the rule:
x1_&&!x2_&&!x2_→x1

contains a subpattern of the form:
x1_&&!x2_&&!x2_

which can be unified with the input for the rule:
x1_||!x1_&&x2_→x2

where these rules follow from Critical Pair Lemma 9 and Critical Pair Lemma 6 respectively.

Critical Pair Lemma 20
The following expressions are equivalent:
x1&&!x1⩵!x2||!x2

PROOF

Note that the input for the rule:
x1_||!x2_||!x2_→x1

contains a subpattern of the form:
x1_||!x2_||!x2_

which can be unified with the input for the rule:
x1_&&!x1_||x2_→x2

where these rules follow from Critical Pair Lemma 12 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 21
The following expressions are equivalent:
x1&&x1⩵x1&&x1||!x1

PROOF

Note that the input for the rule:
x1_&&x2_||!x1_→x1&&x2

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
x1_||!x1_→x1||!x1

where these rules follow from Critical Pair Lemma 5 and Critical Pair Lemma 17 respectively.

Substitution Lemma 6
It can be shown that:
x1&&x1⩵x1

PROOF
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PROOF

We start by taking Critical Pair Lemma 21, and apply the substitution:
x1_&&x2_||!x2_→x1

which follows from Equationalized Axiom 2.

Substitution Lemma 7
It can be shown that:
x1&&x1⩵x1

PROOF

We start by taking Substitution Lemma 6, and apply the substitution:
x1_&&x2_→x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 8
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_&&x1_→x1

which follows from Critical Pair Lemma 16.

Critical Pair Lemma 22
The following expressions are equivalent:
!x1||x2⩵!x1||x1&&x2

PROOF

Note that the input for the rule:
x1_||!x1_&&x2_→x1||x2

contains a subpattern of the form:
!x1_

which can be unified with the input for the rule:
x1_→x1

where these rules follow from Critical Pair Lemma 10 and Substitution Lemma 8 respectively.

Critical Pair Lemma 23
The following expressions are equivalent:
!x1&&x2⩵!x1&&x2||x1

PROOF

Note that the input for the rule:
x1_&&x2_||!x1_→x1&&x2

contains a subpattern of the form:
!x1_
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which can be unified with the input for the rule:
x1_→x1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 8 respectively.

Critical Pair Lemma 24
The following expressions are equivalent:
x1&&x1&&x2⩵x1&&!x1||x2

PROOF

Note that the input for the rule:
x1_&&!x1_||x2_→x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
!x1_||x1_&&x2_→!x1||x2

where these rules follow from Critical Pair Lemma 8 and Critical Pair Lemma 22 respectively.

Substitution Lemma 9
It can be shown that:
x1&&x1&&x2⩵x1&&x2

PROOF

We start by taking Critical Pair Lemma 24, and apply the substitution:
x1_&&!x1_||x2_→x1&&x2

which follows from Critical Pair Lemma 8.

Critical Pair Lemma 25
The following expressions are equivalent:
x1&&x2||x1&&x3⩵x1&&x2||x1&&x3

PROOF

Note that the input for the rule:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

contains a subpattern of the form:
x1_&&x3_

which can be unified with the input for the rule:
x1_&&x1_&&x2_→x1&&x2

where these rules follow from Equationalized Axiom 8 and Substitution Lemma 9 respectively.

Substitution Lemma 10
It can be shown that:
x1&&x2||x1&&x3⩵x1&&x2||x3

PROOF

We start by taking Critical Pair Lemma 25, and apply the substitution:
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Out[2]=

We start by taking Critical Pair Lemma 25, and apply the substitution:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

which follows from Equationalized Axiom 8.

Substitution Lemma 11
It can be shown that:
logical[x1]||despised[x1]⩵(x0||!x0)

PROOF

We start by taking Critical Pair Lemma 18, and apply the substitution:
x1_||!x1_→x0||!x0

which follows from Critical Pair Lemma 11.

Critical Pair Lemma 26
The following expressions are equivalent:
logical[x1]||despised[x1]&&x2⩵(x0||!x0)&&logical[x1]||x2

PROOF

Note that the input for the rule:
x1_||x2_&&x1_||x3_→x1||x2&&x3

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
logical[x1_]||despised[x1_]→x0||!x0

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 11 respectively.

Substitution Lemma 12
It can be shown that:
logical[x1]||despised[x1]&&x2⩵logical[x1]||x2

PROOF

We start by taking Critical Pair Lemma 26, and apply the substitution:
x1_||!x1_&&x2_→x2

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 27
The following expressions are equivalent:
logical[x1]||!despised[x1]⩵logical[x1]

PROOF

Note that the input for the rule:
logical[x1_]||despised[x1_]&&x2_→logical[x1]||x2

contains a subpattern of the form:
logical[x1_]||despised[x1_]&&x2_

which can be unified with the input for the rule:
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x1_||x2_&&!x2_→x1

where these rules follow from Substitution Lemma 12 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 28
The following expressions are equivalent:
x1&&x2||!x2⩵x1&&x2||x1

PROOF

Note that the input for the rule:
x1_&&x2_||x1_&&x3_→x1&&x2||x3

contains a subpattern of the form:
x2_||x1_&&x3_

which can be unified with the input for the rule:
x1_||x2_&&!x1_→x1||x2

where these rules follow from Substitution Lemma 10 and Critical Pair Lemma 2 respectively.

Substitution Lemma 13
It can be shown that:
x1⩵x1&&x2||x1

PROOF

We start by taking Critical Pair Lemma 28, and apply the substitution:
x1_&&x2_||!x2_→x1

which follows from Equationalized Axiom 2.

Critical Pair Lemma 29
The following expressions are equivalent:
x1⩵x1&&x1||x2

PROOF

Note that the input for the rule:
x1_&&x2_||x1_→x1

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 13 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 30
The following expressions are equivalent:
!x1||x2||x1⩵!x1||x1

PROOF

Note that the input for the rule:
!x1 ||x1 &&x2 →!x1||x2
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!x1_||x1_&&x2_→!x1||x2

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_||x1_→x1

where these rules follow from Critical Pair Lemma 22 and Substitution Lemma 13 respectively.

Substitution Lemma 14
It can be shown that:
x1_||x1_&&x2_→x1

PROOF

We start by taking Critical Pair Lemma 14, and apply the substitution:
x1_&&x1_||x2_→x1

which follows from Critical Pair Lemma 29.

Substitution Lemma 15
It can be shown that:
!x1||x2||x1⩵x1||!x1

PROOF

We start by taking Critical Pair Lemma 30, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 31
The following expressions are equivalent:
!x1||x2&&!x2⩵!x1||x2&&x2||!x2

PROOF

Note that the input for the rule:
!x1_&&x2_||x1_→!x1&&x2

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
!x1_||x2_||x1_→x1||!x1

where these rules follow from Critical Pair Lemma 23 and Substitution Lemma 15 respectively.

Substitution Lemma 16
It can be shown that:
!x1||x2&&!x2⩵!x1||x2

PROOF

We start by taking Critical Pair Lemma 31, and apply the substitution:
x1_&&x2_||!x2_→x1

babies_crocs.nb     15



which follows from Equationalized Axiom 2.

Substitution Lemma 17
It can be shown that:
!x1&&!x2||x1⩵!x2||x1

PROOF

We start by taking Substitution Lemma 16, and apply the substitution:
x1_&&x2_→x2&&x1

which follows from Equationalized Axiom 9.

Critical Pair Lemma 32
The following expressions are equivalent:
!x1⩵!x1||!x2||x1

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRuleEquationalProof`ApplyLemma1551,x1_&&x1_||

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
!x1_&&!x2_||x1_→!x2||x1

where these rules follow from Substitution Lemma 14 and Substitution Lemma 17 respectively.

Substitution Lemma 18
It can be shown that:
!baby[x1]||!logical[x1]&&x2⩵despised[x0]||logical[x0]&&!baby[x1]||x2

PROOF

We start by taking Critical Pair Lemma 3, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 19
It can be shown that:
!baby[x1]||!logical[x1]&&x2⩵logical[x0]||despised[x0]&&!baby[x1]||x2

PROOF

We start by taking Substitution Lemma 18, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 20
It can be shown that:
!baby[x1]||!logical[x1]&&x2⩵(x0||!x0)&&!baby[x1]||x2
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PROOF

We start by taking Substitution Lemma 19, and apply the substitution:
logical[x1_]||despised[x1_]→x0||!x0

which follows from Substitution Lemma 11.

Substitution Lemma 21
It can be shown that:
!baby[x1]||!logical[x1]&&x2⩵!baby[x1]||x2

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
x1_||!x1_&&x2_→x2

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 33
The following expressions are equivalent:
!baby[x1]||logical[x1]⩵!baby[x1]

PROOF

Note that the input for the rule:
!baby[x1_]||!logical[x1_]&&x2_→!baby[x1]||x2

contains a subpattern of the form:
!baby[x1_]||!logical[x1_]&&x2_

which can be unified with the input for the rule:
x1_||x2_&&!x2_→x1

where these rules follow from Substitution Lemma 21 and Equationalized Axiom 1 respectively.

Substitution Lemma 22
It can be shown that:
!baby[x1]||logical[x1]⩵!baby[x1]

PROOF

We start by taking Critical Pair Lemma 33, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 23
It can be shown that:
logical[x1]||!baby[x1]⩵!baby[x1]

PROOF

We start by taking Substitution Lemma 22, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.
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Critical Pair Lemma 34
The following expressions are equivalent:
baby[x1]&&logical[x1]⩵baby[x1]&&!baby[x1]

PROOF

Note that the input for the rule:
!x1_&&x2_||x1_→!x1&&x2

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
logical[x1_]||!baby[x1_]→!baby[x1]

where these rules follow from Critical Pair Lemma 23 and Substitution Lemma 23 respectively.

Substitution Lemma 24
It can be shown that:
baby[x1]&&logical[x1]⩵baby[x1]&&!baby[x1]

PROOF

We start by taking Critical Pair Lemma 34, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 25
It can be shown that:
baby[x1]&&logical[x1]⩵baby[x1]&&!baby[x1]

PROOF

We start by taking Substitution Lemma 24, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Critical Pair Lemma 35
The following expressions are equivalent:
x1⩵x1||!x2||!x1

PROOF

Note that the input for the rule:
!x1_||!x2_||x1_→!x1

contains a subpattern of the form:
!x1_

which can be unified with the input for the rule:
x1_→x1

where these rules follow from Critical Pair Lemma 32 and Substitution Lemma 8 respectively.

Substitution Lemma 26
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It can be shown that:
x1⩵x1||!x2||!x1

PROOF

We start by taking Critical Pair Lemma 35, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Critical Pair Lemma 36
The following expressions are equivalent:
x1⩵x1||!!x1||x2

PROOF

Note that the input for the rule:
x1_||!x2_||!x1_→x1

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 26 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 37
The following expressions are equivalent:
x1&&!x1||x2⩵x1&&!x1

PROOF

Note that the input for the rule:
x1_&&!x1_||x2_→x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
x1_||!!x1_||x2_→x1

where these rules follow from Critical Pair Lemma 8 and Critical Pair Lemma 36 respectively.

Substitution Lemma 27
It can be shown that:
x1&&!x1||x2⩵x1&&!x1

PROOF

We start by taking Critical Pair Lemma 37, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Critical Pair Lemma 38
The following expressions  equivalent:
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The following expressions are equivalent:
logical[x1]||!despised[x1]||x2⩵logical[x1]||despised[x1]&&!despised[x1]

PROOF

Note that the input for the rule:
logical[x1_]||despised[x1_]&&x2_→logical[x1]||x2

contains a subpattern of the form:
despised[x1_]&&x2_

which can be unified with the input for the rule:
x1_&&!x1_||x2_→x1&&!x1

where these rules follow from Substitution Lemma 12 and Substitution Lemma 27 respectively.

Substitution Lemma 28
It can be shown that:
logical[x1]||!despised[x1]||x2⩵logical[x1]||!despised[x1]

PROOF

We start by taking Critical Pair Lemma 38, and apply the substitution:
logical[x1_]||despised[x1_]&&x2_→logical[x1]||x2

which follows from Substitution Lemma 12.

Substitution Lemma 29
It can be shown that:
logical[x1]||!despised[x1]||x2⩵logical[x1]

PROOF

We start by taking Substitution Lemma 28, and apply the substitution:
logical[x1_]||!despised[x1_]→logical[x1]

which follows from Critical Pair Lemma 27.

Substitution Lemma 30
It can be shown that:
baby[x1]&&logical[x1]⩵!(x0||!x0)

PROOF

We start by taking Substitution Lemma 25, and apply the substitution:
x1_&&!x1_→!(x0||!x0)

which follows from Critical Pair Lemma 20.

Substitution Lemma 31
It can be shown that:
baby[x1]&&logical[x1]⩵x0&&!x0

PROOF

We start by taking Substitution Lemma 30, and apply the substitution:
!x1 ||!x1 →x0&&!x0
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!x1_||!x1_→x0&&!x0

which follows from Critical Pair Lemma 20.

Critical Pair Lemma 39
The following expressions are equivalent:
baby[x1]&&x2||logical[x1]⩵x2&&baby[x1]||x0&&!x0

PROOF

Note that the input for the rule:
x1_&&x2_||x2_&&x3_→x2&&x1||x3

contains a subpattern of the form:
x2_&&x3_

which can be unified with the input for the rule:
baby[x1_]&&logical[x1_]→x0&&!x0

where these rules follow from Critical Pair Lemma 7 and Substitution Lemma 31 respectively.

Substitution Lemma 32
It can be shown that:
baby[x1]&&x2||logical[x1]⩵x2&&baby[x1]

PROOF

We start by taking Critical Pair Lemma 39, and apply the substitution:
x1_||x2_&&!x2_→x1

which follows from Equationalized Axiom 1.

Substitution Lemma 33
It can be shown that:
!manageCrocodile[x1]||!despised[x1]&&x2⩵despised[x0]||logical[x0]&&!manageCrocodile

PROOF

We start by taking Critical Pair Lemma 4, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 34
It can be shown that:
!manageCrocodile[x1]||!despised[x1]&&x2⩵logical[x0]||despised[x0]&&!manageCrocodile

PROOF

We start by taking Substitution Lemma 33, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 35
It can be shown that:
!manageCrocodile[x1]||!despised[x1]&&x2⩵(x0||!x0)&&!manageCrocodile[x1]||x2
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 manageCrocodile[ ]|| despised[ ]  ( 0|| 0)  manageCrocodile[ ]|| 

PROOF

We start by taking Substitution Lemma 34, and apply the substitution:
logical[x1_]||despised[x1_]→x0||!x0

which follows from Substitution Lemma 11.

Substitution Lemma 36
It can be shown that:
!manageCrocodile[x1]||!despised[x1]&&x2⩵!manageCrocodile[x1]||x2

PROOF

We start by taking Substitution Lemma 35, and apply the substitution:
x1_||!x1_&&x2_→x2

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 40
The following expressions are equivalent:
!manageCrocodile[x1]||despised[x1]⩵!manageCrocodile[x1]

PROOF

Note that the input for the rule:
!manageCrocodile[x1_]||!despised[x1_]&&x2_→!manageCrocodile[x1]||x2

contains a subpattern of the form:
!manageCrocodile[x1_]||!despised[x1_]&&x2_

which can be unified with the input for the rule:
x1_||x2_&&!x2_→x1

where these rules follow from Substitution Lemma 36 and Equationalized Axiom 1 respectively.

Substitution Lemma 37
It can be shown that:
!manageCrocodile[x1]||despised[x1]⩵!manageCrocodile[x1]

PROOF

We start by taking Critical Pair Lemma 40, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 38
It can be shown that:
despised[x1]||!manageCrocodile[x1]⩵!manageCrocodile[x1]

PROOF

We start by taking Substitution Lemma 37, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.
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 Equationalized

Critical Pair Lemma 41
The following expressions are equivalent:
logical[x1]⩵logical[x1]||manageCrocodile[x1]

PROOF

Note that the input for the rule:
logical[x1_]||!despised[x1_]||x2_→logical[x1]

contains a subpattern of the form:
despised[x1_]||x2_

which can be unified with the input for the rule:
despised[x1_]||!manageCrocodile[x1_]→!manageCrocodile[x1]

where these rules follow from Substitution Lemma 29 and Substitution Lemma 38 respectively.

Substitution Lemma 39
It can be shown that:
logical[x1]⩵logical[x1]||manageCrocodile[x1]

PROOF

We start by taking Critical Pair Lemma 41, and apply the substitution:
x1_→x1

which follows from Substitution Lemma 8.

Substitution Lemma 40
It can be shown that:
logical[x1]⩵manageCrocodile[x1]||logical[x1]

PROOF

We start by taking Substitution Lemma 39, and apply the substitution:
x1_||x2_→x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 42
The following expressions are equivalent:
manageCrocodile[x1]&&baby[x1]⩵baby[x1]&&logical[x1]

PROOF

Note that the input for the rule:
baby[x1_]&&x2_||logical[x1_]→x2&&baby[x1]

contains a subpattern of the form:
x2_||logical[x1_]

which can be unified with the input for the rule:
manageCrocodile[x1_]||logical[x1_]→logical[x1]

where these rules follow from Substitution Lemma 32 and Substitution Lemma 40 respectively.

Substitution Lemma 41
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Substitution Lemma 41
It can be shown that:
manageCrocodile[x1]&&baby[x1]⩵x0&&!x0

PROOF

We start by taking Critical Pair Lemma 42, and apply the substitution:
baby[x1_]&&logical[x1_]→x0&&!x0

which follows from Substitution Lemma 31.

Substitution Lemma 42
It can be shown that:
(a.0||!a.0)⩵!manageCrocodile[x0]&&baby[x0]

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_&&x2_→x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 43
It can be shown that:
!x0&&!x0⩵!manageCrocodile[x0]&&baby[x0]

PROOF

We start by taking Substitution Lemma 42, and apply the substitution:
x1_||!x1_→!x0&&!x0

which follows from Critical Pair Lemma 19.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 43, and apply the substitution:
manageCrocodile[x1_]&&baby[x1_]→x0&&!x0

which follows from Substitution Lemma 41.
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