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Abstract
Two logics are implicationally equivalent if the axioms and inference rules of each imply the axioms of the 
other.   Using the automated equational logic deduction system contained in Mathematica ,  I show the 

implicational equivalence of the Principia Mathematica (PM)  and  Łukasiewicz’s CN sentential calculi.  
The proof appears to be novel.

1.0  Introduction
Two logics are implicationally equivalent if the axioms and inference rules of each imply the axioms of 
the other.  

Section 2 contains a summary of an automated equational logic derivation of the implicational equiva-
lence of Łukasiewicz’s CN sentential calculus ([1]; hereafter abbreviated “CN”)  and the  sentential 
calculus of Principia Mathematica ([2]; hereafter abbreviated “PM”)

1.1  Some terminology
I assume the definitions of term, value of a term, variable, and constant contained in [4], Chapter 3.

A rewriting system is a system of R rules that transforms expressions that satisfy some well-defined set 
of formation rules to another expression that satisfy those formation rules. For the purposes of this 
paper, I restrict “rewriting system” to a rewriting system that concerns identities of terms. 

Two terms are said to be identical if the values of the terms are equal for all values of variables occur-
ring in them.



A reduction of a term T to a term T’ is a (typically recursive) rewriting of T to T’ using a set of rewriting 
rules R such that T’ is “simpler than” T (given some definition of “simpler than”). A reduction sequence 
of a term T to a term T’ is a sequence T0 = T, T1, T2, T3, ..., Tn = T’, where each Ti is the result of applying 
R to Ti-1, i = 1, 2, ..., n.

If “simpler than” is a partial ordering ([5],  Df. 21, 72 ) on a reduction sequence that begins with T and 
ends with T’ in a system with a set of rewriting rules R, “simpler than” induces a reduction order ([4], 
102) on the reduction sequence that begins with T and ends with T’.  A term Tn is in normal form if no 
application of R to Tn changes Tn.

A rewriting system is said to be finitely terminating if every reduction sequence of any term T produces, 
in a finite number of iterations, a normal form of T. A rewriting system is said to be confluent if the 
normal forms of all terms in the system are unique.

Some term rewriting systems are both finitely terminating and confluent ([4], esp. Chapter 9).  Such 
rewriting systems have unique normal forms for all expressions. This permits us to use the the output 
of such a system to determine whether there is an identity between two terms T1 and T2 in the follow-
ing manner. If T1 and T2 and have the same normal form, then there is an identity
between T1 and T2. Otherwise, there is not an identity.

1.2 Mathematica’s equational logic inference algorithm

The inference algorithm in Mathematica’s ADF is the Knuth-Bendix completion algorithm ([6]). KBC 
attempts to transform a given finite set of identities (an “input” to KBC) to a finitely terminating, conflu-
ent term rewriting system that preserves identity.  At initialization, KBC attempts to “orient” the identi-
ties supplied in its input according to the KnuthBendix reduction order ([4], Section 5.4.4). This results 
in an initial set of reduction rules.  KBC then attempts to complete this initial set of rules with addi-
tional rules, obtaining their normal forms, and adding a new rule for every pair of the normal forms in 
accordance with the reduction order.

KBC may
1. Terminate with success, yielding a finitely terminating, confluent set of rules, or
2. Terminate with failure, or
3. Loop without terminating.

2.0   Proof of “The CN and PM sentential calculi are implicationally equivalent”

The Mathematica ([3]) script shown in this section was executed on a Dell Inspiron 545 with an  Intel 
Core2 Quad CPU Q8200 @ 2.33 GHz and 8.00 GB RAM, running under  Windows 10.
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cn1 - cn3 are the axioms of  Łukasiewicz’s sentential calculus, expressed in Mathematica notation.

In[1]:= cn1 = ForAll[{x, y, z}, Implies[Implies[x, y], Implies[Implies[y, z], Implies[x, z]]]]

Out[1]= ∀{x,y,z} ((x  y)  ((y  z)  (x  z)))

In[2]:= cn2 = ForAll[{x, y}, Implies[x, Implies[Not[x], y]] ]

Out[2]= ∀{x,y} (x  (! x  y))

In[3]:= cn3 = ForAll[x, Implies[Implies[Not[x], x], x] ]

Out[3]= ∀x ((! x  x)  x)

In[4]:= CNAxioms = {cn1, cn2, cn3}

Out[4]= ∀{x,y,z} ((x  y)  ((y  z)  (x  z))), ∀{x,y} (x  (! x  y)), ∀x ((! x  x)  x)

pm1 - pm5 are the axioms of the sentential calculus of Principia Mathematica, expressed in Mathemat-
ica notation.

In[5]:= pm1 = ForAll[{x, y}, Implies[y, Implies[Not[x], y]]]

Out[5]= ∀{x,y} (y  (! x  y))

In[6]:= pm2 = ForAll[x, Implies[Implies[Not[x], x], x]]

Out[6]= ∀x ((! x  x)  x)

In[7]:= pm3 = ForAll[{x, y}, Implies[Implies[Not[x], y], Implies[Not[y], x]]]

Out[7]= ∀{x,y} ((! x  y)  (! y  x))

In[8]:= pm4 =

ForAll[{x, y.z}, Implies[Implies[y, z], Implies[Implies[Not[x], y], Implies[Not[x], z]]]]

Out[8]= ∀{x} ((y  z)  ((! x  y)  (! x  z)))

In[9]:= pm5 = ForAll[{x, y, z},

Implies[Implies[Not[x], Implies[Not[y], z]], Implies[Not[y], Implies[Not[x], z]]]]

Out[9]= ∀{x,y,z} ((! x  (! y  z))  (! y  (! x  z)))

In[10]:= pmAxioms = {pm1, pm2, pm3, pm4, pm5}

Out[10]= ∀{x,y} (y  (! x  y)), ∀x ((! x  x)  x), ∀{x,y} ((! x  y)  (! y  x)),

∀{x} ((y  z)  ((! x  y)  (! x  z))), ∀{x,y,z} ((! x  (! y  z))  (! y  (! x  z)))

Proof that CN implies PM.
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In[11]:= proofCNimppm1 = FindEquationalProof[pm1, CNAxioms]

Out[11]= ProofObject
Logic: Predicate/EquationalLogic Steps: 51
Theorem: ∀x,y (y  (!x  y))



In[12]:= proofCNimppm2 = FindEquationalProof[pm2, CNAxioms]

Out[12]= ProofObject
Logic: Predicate/EquationalLogic Steps: 17
Theorem: ∀x ((!x  x)  x)



In[13]:= proofCNimppm3 = FindEquationalProof[pm3, CNAxioms]

Out[13]= ProofObject
Logic: Predicate/EquationalLogic Steps: 49
Theorem: ∀x,y ((!x  y)  (!y  x))



In[14]:= proofCNimppm4 = FindEquationalProof[pm4, CNAxioms]

Out[14]= ProofObject
Logic: Predicate/EquationalLogic Steps: 69
Theorem: ∀{x} ((y  z)  ((!x  y)  (!x  z)))



In[15]:= proofCNimppm5 = FindEquationalProof[pm5, CNAxioms]

Out[15]= ProofObject
Logic: Predicate/EquationalLogic Steps: 87
Theorem: ∀x,y,z ((!x  (!y  z))  (!y  (!x  z)))



Proof of PM implies CN.

In[16]:= proofPMimpCN1 = FindEquationalProof[cn1, PMAxioms]

Out[16]= ProofObject
Logic: Predicate/EquationalLogic Steps: 98
Theorem: ∀x,y,z ((x  y)  ((y  z)  (x  z)))



In[17]:= proofPMimpCN2 = FindEquationalProof[cn2, PMAxioms]

Out[17]= ProofObject
Logic: Predicate/EquationalLogic Steps: 36
Theorem: ∀x,y (x  (!x  y))



In[18]:= proofPMimpCN3 = FindEquationalProof[cn3, PMAxioms]

Out[18]= ProofObject
Logic: Predicate/EquationalLogic Steps: 24
Theorem: ∀x ((!x  x)  x)


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APPENDIX 1.  Proof of CN implies PM1.

In[19]:= proofCNimppm1["ProofNotebook"]

Axiom 1
We are given that:
∀{x,y,z}((xy)((yz)(xz)))

Axiom 2
We are given that:
∀{x,y}(x(!xy))

Axiom 3
We are given that:
∀x((!xx)x)

Hypothesis 1
We would like to show that:
∀{x,y}(y(!xy))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
(!x1||x1||x2)a.0||!a.0

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)a.0||!a.0
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Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(!(x1||x1)||x1)a.0||!a.0

Equationalized Axiom 8
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 9
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!y0||x1||y0)a.0||!a.0

Critical Pair Lemma 1
The following expressions are equivalent:
((x1&&!x1)||x2)x2

PROOF

Note that the input for the rule:
x1_||x2_x2_||x1_

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Substitution Lemma 1
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x1||x1||x1)

PROOF

We start by taking Equationalized Axiom 6, and apply the substitution:
a.0||!a.0!x1||x1||x1

which follows from Equationalized Axiom 5.

Substitution Lemma 2
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:
x1 ||x2 x2||x1
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x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 3
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Equationalized Axiom 7, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 4
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 5
It can be shown that:
(x1||!(x1||x1))(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
a.0||!a.0!x1||x1||x1

which follows from Equationalized Axiom 5.

Substitution Lemma 6
It can be shown that:
(x1||!(x1||x1))(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 7
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x1||!(x1||x1)

PROOF

We start by taking Substitution Lemma 2, and apply the substitution:
!x1||x1||x1x1||!(x1||x1)
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!x1||x1||x1 x1||!(x1||x1)

which follows from Substitution Lemma 6.

Critical Pair Lemma 2
The following expressions are equivalent:
(x1&&(x2||!x1))(x1&&x2)

PROOF

Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
(x1_&&x2_)||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
((x1||!x1)&&x2)x2

PROOF

Note that the input for the rule:
x1_&&x2_x2_&&x1_

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 9 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1&&x2)(x1&&(!x1||x2))

PROOF

Note that the input for the rule:
(x1_&&!x1_)||x2_x2

contains a subpattern of the form:
(x1_&&!x1_)||x2_

which can be unified with the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 8 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
(x1||x2)(x1||(!x1&&x2))
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(x1||x2)(x1||(!x1&&x2))

PROOF

Note that the input for the rule:
(x1_||!x1_)&&x2_x2

contains a subpattern of the form:
(x1_||!x1_)&&x2_

which can be unified with the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

where these rules follow from Critical Pair Lemma 3 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
(x1&&x1)x1

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
x1_&&(!x1_||x2_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1&&(x1||x2))x1&&a.0||!a.0

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
"0"

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 5 respectively.

Substitution Lemma 8
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Critical Pair Lemma 7, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.
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Out[19]=

which follows from Equationalized Axiom 2.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x1_x1

where these rules follow from Critical Pair Lemma 5 and Critical Pair Lemma 6 respectively.

Substitution Lemma 9
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x1||!x1

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_||x1_x1

which follows from Critical Pair Lemma 8.

Critical Pair Lemma 10
The following expressions are equivalent:
x1(x1&&(x2||x1))

PROOF

Note that the input for the rule:
x1_&&(x1_||x2_)x1

contains a subpattern of the form:

10     Luka_eqv_to_PM.nb



x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 8 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1&&x1)(x1&&(x1||!x1))

PROOF

Note that the input for the rule:
x1_&&(x2_||!x1_)x1&&x2

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
x1_||!x1_x1||!x1

where these rules follow from Critical Pair Lemma 2 and Critical Pair Lemma 9 respectively.

Substitution Lemma 10
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Critical Pair Lemma 11, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.

Substitution Lemma 11
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Substitution Lemma 10, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 12
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 11, and apply the substitution:
x1_&&x1_x1

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 12
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Critical Pair Lemma 12
The following expressions are equivalent:
(!x1||x2)(!x1||(x1&&x2))

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_

which can be unified with the input for the rule:
x1_x1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 12 respectively.

Substitution Lemma 13
It can be shown that:
(x1&&(x2||x1))x1

PROOF

We start by taking Critical Pair Lemma 10, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Substitution Lemma 14
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Substitution Lemma 8, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Critical Pair Lemma 13
The following expressions are equivalent:
(x1||!x1)(x2||x1||!x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x1_&&(x2_||x1_)

which can be unified with the input for the rule:
(x1_||!x1_)&&x2_x2

where these rules follow from Substitution Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 14
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The following expressions are equivalent:
(!x1||x1||x2)(!x1||x1)

PROOF

Note that the input for the rule:
!x1_||(x1_&&x2_)!x1||x2

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Critical Pair Lemma 12 and Substitution Lemma 14 respectively.

Critical Pair Lemma 15
The following expressions are equivalent:
(x1||!x1)(!(!x1||x2)||!x1||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[222,x1_||x1_x1

contains a subpattern of the form:
!(!x2_||x3_)||!x1_||x3_

which can be unified with the input for the rule:
x1_||x2_||!x2_x2||!x2

where these rules follow from Substitution Lemma 9 and Critical Pair Lemma 13 respectively.

Substitution Lemma 15
It can be shown that:
(x1||!x1)(!x1||x1)

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_||x2_||!x2_x2||!x2

which follows from Critical Pair Lemma 13.

Substitution Lemma 16
It can be shown that:
(x1||!x1)(!x1||x1)

PROOF

We start by taking Substitution Lemma 15, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Substitution Lemma 17
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It can be shown that:
(x1||!x1)(x1||!x1)

PROOF

We start by taking Substitution Lemma 16, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 18
It can be shown that:
(!x1||x1||x2)(x1||!x1)

PROOF

We start by taking Critical Pair Lemma 14, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 19
It can be shown that:
(!y0||y0||x1)a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 20
It can be shown that:
(!y0||y0||x1)(x1||!x1)

PROOF

We start by taking Substitution Lemma 19, and apply the substitution:
x1_||!x1_x1||!x1

which follows from Substitution Lemma 17.

Substitution Lemma 21
It can be shown that:
(y0||!y0)(x1||!x1)

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
!x1_||x1_||x2_x1||!x1

which follows from Substitution Lemma 18.

Conclusion 1
We obtain the conclusion:
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True

PROOF

Take Substitution Lemma 21, and apply the substitution:
x1_||!x1_x1||!x1

which follows from Substitution Lemma 17.
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APPENDIX 2.  Proof of CN implies PM2.

In[20]:= proofCNimppm2["ProofNotebook"]

Axiom 1
We are given that:
∀{x,y,z}((xy)((yz)(xz)))

Axiom 2
We are given that:
∀{x,y}(x(!xy))

Axiom 3
We are given that:
∀x((!xx)x)

Hypothesis 1
We would like to show that:
∀x((!xx)x)

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
(!x1||x1||x2)a.0||!a.0

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(!(x1||x1)||x1)a.0||!a.0

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(x0||x0)||x0)a.0||!a.0

Substitution Lemma 1
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Equationalized Axiom 3, and apply the substitution:
x1_||x2_x2||x1
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which follows from Equationalized Axiom 1.

Substitution Lemma 2
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 1.

Substitution Lemma 3
It can be shown that:
(x1||!(x1||x1))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 2, and apply the substitution:
a.0||!a.0!x0||x0||x0

which follows from Equationalized Axiom 2.

Substitution Lemma 4
It can be shown that:
(x1||!(x1||x1))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 1.

Substitution Lemma 5
It can be shown that:
(!(x0||x0)||x0)a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 1.

Substitution Lemma 6
It can be shown that:
(x0||!(x0||x0))a.0||!a.0

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x2_x2||x1
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which follows from Equationalized Axiom 1.

Substitution Lemma 7
It can be shown that:
(x0||!(x0||x0))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 6, and apply the substitution:
a.0||!a.0!x0||x0||x0

which follows from Equationalized Axiom 2.

Substitution Lemma 8
It can be shown that:
(x0||!(x0||x0))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 1.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 8, and apply the substitution:
x1_||!(x1_||x1_)!x0||x0||x0

which follows from Substitution Lemma 4.
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APPENDIX 3.  Proof of CN implies PM3.

In[21]:= proofCNimppm3["ProofNotebook"]

Axiom 1
We are given that:
∀{x,y,z}((xy)((yz)(xz)))

Axiom 2
We are given that:
∀{x,y}(x(!xy))

Axiom 3
We are given that:
∀x((!xx)x)

Hypothesis 1
We would like to show that:
∀{x,y}((!xy)(!yx))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
(!x1||x1||x2)a.0||!a.0

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)a.0||!a.0
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Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(!(x1||x1)||x1)a.0||!a.0

Equationalized Axiom 8
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 9
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(x1||y0)||y0||x1)a.0||!a.0

Critical Pair Lemma 1
The following expressions are equivalent:
((x1&&!x1)||x2)x2

PROOF

Note that the input for the rule:
x1_||x2_x2_||x1_

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Substitution Lemma 1
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x1||x1||x1)

PROOF

We start by taking Equationalized Axiom 6, and apply the substitution:
a.0||!a.0!x1||x1||x1

which follows from Equationalized Axiom 5.

Substitution Lemma 2
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:
x1 ||x2 x2||x1
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x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 3
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Equationalized Axiom 7, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 4
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 5
It can be shown that:
(x1||!(x1||x1))(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
a.0||!a.0!x1||x1||x1

which follows from Equationalized Axiom 5.

Substitution Lemma 6
It can be shown that:
(x1||!(x1||x1))(!x1||x1||x1)

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 7
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x1||!(x1||x1)

PROOF

We start by taking Substitution Lemma 2, and apply the substitution:
!x1||x1||x1x1||!(x1||x1)
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!x1||x1||x1x1||!(x1||x1)

which follows from Substitution Lemma 6.

Critical Pair Lemma 2
The following expressions are equivalent:
(x1&&(x2||!x1))(x1&&x2)

PROOF

Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
(x1_&&x2_)||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
((x1||!x1)&&x2)x2

PROOF

Note that the input for the rule:
x1_&&x2_x2_&&x1_

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 9 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1&&x2)(x1&&(!x1||x2))

PROOF

Note that the input for the rule:
(x1_&&!x1_)||x2_x2

contains a subpattern of the form:
(x1_&&!x1_)||x2_

which can be unified with the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 8 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
(x1||x2)(x1||(!x1&&x2))
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(x1||x2)(x1||(!x1&&x2))

PROOF

Note that the input for the rule:
(x1_||!x1_)&&x2_x2

contains a subpattern of the form:
(x1_||!x1_)&&x2_

which can be unified with the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

where these rules follow from Critical Pair Lemma 3 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
(x1&&x1)x1

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
x1_&&(!x1_||x2_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1&&(x1||x2))x1&&a.0||!a.0

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
"0"

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 5 respectively.

Substitution Lemma 8
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Critical Pair Lemma 7, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.
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which follows from Equationalized Axiom 2.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x1_x1

where these rules follow from Critical Pair Lemma 5 and Critical Pair Lemma 6 respectively.

Substitution Lemma 9
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x1||!x1

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_||x1_x1

which follows from Critical Pair Lemma 8.

Critical Pair Lemma 10
The following expressions are equivalent:
x1(x1&&(x2||x1))

PROOF

Note that the input for the rule:
x1_&&(x1_||x2_)x1

contains a subpattern of the form:
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x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 8 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1&&x1)(x1&&(x1||!x1))

PROOF

Note that the input for the rule:
x1_&&(x2_||!x1_)x1&&x2

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
x1_||!x1_x1||!x1

where these rules follow from Critical Pair Lemma 2 and Critical Pair Lemma 9 respectively.

Substitution Lemma 10
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Critical Pair Lemma 11, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.

Substitution Lemma 11
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Substitution Lemma 10, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 12
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 11, and apply the substitution:
x1_&&x1_x1

which follows from Critical Pair Lemma 6.

Substitution Lemma 13
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Substitution Lemma 13
It can be shown that:
(x1&&(x2||x1))x1

PROOF

We start by taking Critical Pair Lemma 10, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Critical Pair Lemma 12
The following expressions are equivalent:
(x1||!x1)(x2||x1||!x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x1_&&(x2_||x1_)

which can be unified with the input for the rule:
(x1_||!x1_)&&x2_x2

where these rules follow from Substitution Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 13
The following expressions are equivalent:
(x1||!x1)(!(!x1||x2)||!x1||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[222,x1_||x1_x1

contains a subpattern of the form:
!(!x2_||x3_)||!x1_||x3_

which can be unified with the input for the rule:
x1_||x2_||!x2_x2||!x2

where these rules follow from Substitution Lemma 9 and Critical Pair Lemma 12 respectively.

Substitution Lemma 14
It can be shown that:
(x1||!x1)(!x1||x1)

PROOF

We start by taking Critical Pair Lemma 13, and apply the substitution:
x1_||x2_||!x2_x2||!x2

which follows from Critical Pair Lemma 12.

Substitution Lemma 15
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It can be shown that:
(x1||!x1)(!x1||x1)

PROOF

We start by taking Substitution Lemma 14, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Substitution Lemma 16
It can be shown that:
(x1||!x1)(x1||!x1)

PROOF

We start by taking Substitution Lemma 15, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 17
It can be shown that:
(!(y0||x1)||y0||x1)a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 18
It can be shown that:
(y0||x1||!(y0||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 17, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 19
It can be shown that:
(y0||x1||!(y0||x1))(x1||!x1)

PROOF

We start by taking Substitution Lemma 18, and apply the substitution:
x1_||!x1_x1||!x1

which follows from Substitution Lemma 16.

Substitution Lemma 20
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It can be shown that:
(y0||x1||!(y0||x1))(x1||!x1)

PROOF

We start by taking Substitution Lemma 19, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Substitution Lemma 21
It can be shown that:
(y0||x1||!(y0||x1))(x1||!x1)

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
x1_x1

which follows from Substitution Lemma 12.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 21, and apply the substitution:
x1_||!x1_x1||!x1

which follows from Substitution Lemma 16.
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APPENDIX 4.  Proof of CN implies PM4.

In[22]:= proofCNimppm4["ProofNotebook"]

Axiom 1
We are given that:
∀{x,y,z}((xy)((yz)(xz)))

Axiom 2
We are given that:
∀{x,y}(x(!xy))

Axiom 3
We are given that:
∀x((!xx)x)

Hypothesis 1
We would like to show that:
∀{x}((yz)((!xy)(!xz)))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
(!x1||x1||x2)a.0||!a.0

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
(!(!x1||x2)||!(!x2||x3)||!x1||x3) a ||!a 
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(!(!x1||x2)||!(!x2||x3)||!x1||x3)a.0||!a.0

Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(!(x1||x1)||x1)a.0||!a.0

Equationalized Axiom 8
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 9
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(!y||z)||!(x0||y)||x0||z)a.0||!a.0

Critical Pair Lemma 1
The following expressions are equivalent:
((x1&&!x1)||x2)x2

PROOF

Note that the input for the rule:
x1_||x2_x2_||x1_

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 2
The following expressions are equivalent:
(x1||(x2&&!x1))(x1||x2)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
(x1_||x2_)&&(x1_||x3_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 3
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The following expressions are equivalent:
(x1||(x2&&x3))((x2||x1)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 3 respectively.

Substitution Lemma 1
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x0||x0||x0)

PROOF

We start by taking Equationalized Axiom 6, and apply the substitution:
a.0||!a.0!x0||x0||x0

which follows from Equationalized Axiom 5.

Substitution Lemma 2
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 3
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Equationalized Axiom 7, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 4
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
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 by taking  3,  apply
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 5
It can be shown that:
(x1||!(x1||x1))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
a.0||!a.0!x0||x0||x0

which follows from Equationalized Axiom 5.

Substitution Lemma 6
It can be shown that:
(x1||!(x1||x1))(!x0||x0||x0)

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 7
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x0||!(x0||x0)

PROOF

We start by taking Substitution Lemma 2, and apply the substitution:
!x0||x0||x0x0||!(x0||x0)

which follows from Substitution Lemma 6.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1&&(x2||!x1))(x1&&x2)

PROOF

Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
(x1_&&x2_)||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
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The following expressions are equivalent:
((x1||!x1)&&x2)x2

PROOF

Note that the input for the rule:
x1_&&x2_x2_&&x1_

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 9 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
(x1&&x2)(x1&&(!x1||x2))

PROOF

Note that the input for the rule:
(x1_&&!x1_)||x2_x2

contains a subpattern of the form:
(x1_&&!x1_)||x2_

which can be unified with the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 8 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1||x2)(x1||(!x1&&x2))

PROOF

Note that the input for the rule:
(x1_||!x1_)&&x2_x2

contains a subpattern of the form:
(x1_||!x1_)&&x2_

which can be unified with the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1 ||(x2 &&!x1 )x1||x2
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contains a subpattern of the form:
x1_||(x2_&&!x1_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
(x1||(x2&&x1))((x1||x2)&&x1)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x3_

which can be unified with the input for the rule:
x1_||x1_x1

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 8 respectively.

Substitution Lemma 8
It can be shown that:
(x1||(x2&&x1))(x1&&(x1||x2))

PROOF

We start by taking Critical Pair Lemma 9, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Critical Pair Lemma 10
The following expressions are equivalent:
(x1&&x1)x1

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
x1_&&(!x1_||x2_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1&&(x1||x2))x1&&a0||!a0
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(x1&&(x1||x2))x1&&a.0||!a.0

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
"0"

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 5 respectively.

Substitution Lemma 9
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Critical Pair Lemma 11, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.

Critical Pair Lemma 12
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 7 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 13
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x1_x1

where these rules follow from Critical Pair Lemma 7 and Critical Pair Lemma 10 respectively.

Luka_eqv_to_PM.nb    35



Out[22]=

where these rules follow from Critical Pair Lemma 7 and Critical Pair Lemma 10 respectively.

Substitution Lemma 10
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x0||!x0

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_||x1_x1

which follows from Critical Pair Lemma 12.

Critical Pair Lemma 14
The following expressions are equivalent:
x1(x1&&(x2||x1))

PROOF

Note that the input for the rule:
x1_&&(x1_||x2_)x1

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 9 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 15
The following expressions are equivalent:
(x1&&x1)(x1&&(x1||!x1))

PROOF

Note that the input for the rule:
x1_&&(x2_||!x1_)x1&&x2

contains a subpattern of the form:
x2_||!x1_

which can be unified with the input for the rule:
x1_||!x1_x1||!x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 13 respectively.

Substitution Lemma 11
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.
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Substitution Lemma 12
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Substitution Lemma 11, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 13
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 12, and apply the substitution:
x1_&&x1_x1

which follows from Critical Pair Lemma 10.

Substitution Lemma 14
It can be shown that:
(x1&&(x2||x1))x1

PROOF

We start by taking Critical Pair Lemma 14, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 15
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Substitution Lemma 9, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Critical Pair Lemma 16
The following expressions are equivalent:
(x1||!x1)(x2||x1||!x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x1_&&(x2_||x1_)
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which can be unified with the input for the rule:
(x1_||!x1_)&&x2_x2

where these rules follow from Substitution Lemma 14 and Critical Pair Lemma 5 respectively.

Substitution Lemma 16
It can be shown that:
x1_||(x2_&&x1_)x1

PROOF

We start by taking Substitution Lemma 8, and apply the substitution:
x1_&&(x1_||x2_)x1

which follows from Substitution Lemma 15.

Critical Pair Lemma 17
The following expressions are equivalent:
(x1||x2)(x1||x2||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[412,x1_&&(x1_||x2

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Substitution Lemma 16 and Substitution Lemma 15 respectively.

Substitution Lemma 17
It can be shown that:
(x1||x2)(x1||x1||x2)

PROOF

We start by taking Critical Pair Lemma 17, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 18
The following expressions are equivalent:
(x1||((x1||x2)&&x3))((x1||x2)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which  be unified with the input for the rule:
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which can be unified with the input for the rule:
x1_||x1_||x2_x1||x2

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 17 respectively.

Substitution Lemma 18
It can be shown that:
(x1||((x1||x2)&&x3))(x1||(x2&&x3))

PROOF

We start by taking Critical Pair Lemma 18, and apply the substitution:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

which follows from Equationalized Axiom 4.

Critical Pair Lemma 19
The following expressions are equivalent:
(x0||!x0)(!(!x1||x2)||!x1||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[222,x1_||x1_x1

contains a subpattern of the form:
!(!x2_||x3_)||!x1_||x3_

which can be unified with the input for the rule:
x1_||x2_||!x2_x2||!x2

where these rules follow from Substitution Lemma 10 and Critical Pair Lemma 16 respectively.

Substitution Lemma 19
It can be shown that:
(x0||!x0)(!x1||x1)

PROOF

We start by taking Critical Pair Lemma 19, and apply the substitution:
x1_||x2_||!x2_x2||!x2

which follows from Critical Pair Lemma 16.

Substitution Lemma 20
It can be shown that:
(x0||!x0)(!x1||x1)

PROOF

We start by taking Substitution Lemma 19, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 21
It can be shown that:
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It can be shown that:
(x0||!x0)(x1||!x1)

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 20
The following expressions are equivalent:
(x1||(x2&&(x2||x3)))(x1||x2||(x1&&x3))

PROOF

Note that the input for the rule:
x1_||((x1_||x2_)&&x3_)x1||(x2&&x3)

contains a subpattern of the form:
(x1_||x2_)&&x3_

which can be unified with the input for the rule:
(x1_||x2_)&&(x2_||x3_)x2||(x1&&x3)

where these rules follow from Substitution Lemma 18 and Critical Pair Lemma 3 respectively.

Substitution Lemma 22
It can be shown that:
(x1||x2)(x1||x2||(x1&&x3))

PROOF

We start by taking Critical Pair Lemma 20, and apply the substitution:
x1_&&(x1_||x2_)x1

which follows from Substitution Lemma 15.

Critical Pair Lemma 21
The following expressions are equivalent:
(x1||x2)(x1||(x1&&x3)||x2)

PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x2_||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 22 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 22
The following expressions are equivalent:
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(x1||x2)(x1||x2||(x3&&x1))

PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x1_&&x3_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Substitution Lemma 22 and Equationalized Axiom 9 respectively.

Critical Pair Lemma 23
The following expressions are equivalent:
(x1||x2)(x1||(x3&&x1)||x2)

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)||x3_x1||x3

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 21 and Equationalized Axiom 9 respectively.

Critical Pair Lemma 24
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x3||x1)

PROOF

Note that the input for the rule:
x1_||x2_||(x3_&&x1_)x1||x2

contains a subpattern of the form:
x3_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Critical Pair Lemma 22 and Substitution Lemma 15 respectively.

Critical Pair Lemma 25
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x2||x3)

PROOF

Note that the input for the rule:
x1_||(x2_&&x1_)||x3_x1||x3
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contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||x1_)x1

where these rules follow from Critical Pair Lemma 23 and Substitution Lemma 14 respectively.

Critical Pair Lemma 26
The following expressions are equivalent:
(x1||x2||x3)(x3||x1||x1||x2)

PROOF

Note that the input for the rule:
x1_||x2_||x3_||x1_x1||x2||x3

contains a subpattern of the form:
x1_||x2_||x3_||x1_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 24 and Equationalized Axiom 3 respectively.

Substitution Lemma 23
It can be shown that:
(x1||x2||x3)(x3||x1||x2)

PROOF

We start by taking Critical Pair Lemma 26, and apply the substitution:
x1_||x2_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 25.

Substitution Lemma 24
It can be shown that:
(!(!y||z)||x0||z||!(x0||y))a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 25
It can be shown that:
(x0||z||!(x0||y)||!(!y||z))a.0||!a.0

PROOF

We start by taking Substitution Lemma 24, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom
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which follows from Equationalized Axiom 3.

Substitution Lemma 26
It can be shown that:
(x0||z||!(x0||y)||!(!y||z))(x0||!x0)

PROOF

We start by taking Substitution Lemma 25, and apply the substitution:
x1_||!x1_x0||!x0

which follows from Substitution Lemma 21.

Substitution Lemma 27
It can be shown that:
(!(!y||z)||x0||z||!(x0||y))(x0||!x0)

PROOF

We start by taking Substitution Lemma 26, and apply the substitution:
x1_||x2_||x3_x3||x1||x2

which follows from Substitution Lemma 23.

Substitution Lemma 28
It can be shown that:
(!(x0||y)||!(!y||z)||x0||z)(x0||!x0)

PROOF

We start by taking Substitution Lemma 27, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 28, and apply the substitution:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_x0||!x0

which follows from Substitution Lemma 10.
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APPENDIX 5.  Proof of CN implies PM5.

In[23]:= proofCNimppm5["ProofNotebook"]

Axiom 1
We are given that:
∀{x,y,z}((xy)((yz)(xz)))

Axiom 2
We are given that:
∀{x,y}(x(!xy))

Axiom 3
We are given that:
∀x((!xx)x)

Hypothesis 1
We would like to show that:
∀{x,y,z}((!x(!yz))(!y(!xz)))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
(!x1||x1||x2)a.0||!a.0

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)a.0||!a.0
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Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(!(x1||x1)||x1)a.0||!a.0

Equationalized Axiom 8
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 9
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(x2||y1||z0)||y1||x2||z0)a.0||!a.0

Critical Pair Lemma 1
The following expressions are equivalent:
((x1&&!x1)||x2)x2

PROOF

Note that the input for the rule:
x1_||x2_x2_||x1_

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 3 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 2
The following expressions are equivalent:
(x1||(x2&&!x1))(x1||x2)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
(x1_||x2_)&&(x1_||x3_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
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(x1||(x2&&x3))((x2||x1)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 3 respectively.

Substitution Lemma 1
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!y1||y1||y1)

PROOF

We start by taking Equationalized Axiom 6, and apply the substitution:
a.0||!a.0!y1||y1||y1

which follows from Equationalized Axiom 5.

Substitution Lemma 2
It can be shown that:
(!(!x1||x2)||!(!x2||x3)||!x1||x3)(!y1||y1||y1)

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 3
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Equationalized Axiom 7, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 4
It can be shown that:
(x1||!(x1||x1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
x1 ||x2 x2||x1
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which follows from Equationalized Axiom 3.

Substitution Lemma 5
It can be shown that:
(x1||!(x1||x1))(!y1||y1||y1)

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
a.0||!a.0!y1||y1||y1

which follows from Equationalized Axiom 5.

Substitution Lemma 6
It can be shown that:
(x1||!(x1||x1))(!y1||y1||y1)

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 7
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_y1||!(y1||y1)

PROOF

We start by taking Substitution Lemma 2, and apply the substitution:
!y1||y1||y1y1||!(y1||y1)

which follows from Substitution Lemma 6.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1&&(x2||!x1))(x1&&x2)

PROOF

Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
(x1_&&x2_)||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Equationalized Axiom 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
((x1||!x1)&&x2)x2
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((x1||!x1)&&x2)x2

PROOF

Note that the input for the rule:
x1_&&x2_x2_&&x1_

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Equationalized Axiom 9 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
(x1&&x2)(x1&&(!x1||x2))

PROOF

Note that the input for the rule:
(x1_&&!x1_)||x2_x2

contains a subpattern of the form:
(x1_&&!x1_)||x2_

which can be unified with the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 8 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1||x2)(x1||(!x1&&x2))

PROOF

Note that the input for the rule:
(x1_||!x1_)&&x2_x2

contains a subpattern of the form:
(x1_||!x1_)&&x2_

which can be unified with the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 4 respectively.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1||!x1)(x2||!x2)

PROOF

Note that the input for the rule:
(x1_||!x1_)&&x2_x2

contains a subpattern of the form:
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contains a subpattern of the form:
(x1_||!x1_)&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1_||(x2_&&!x1_)x1||x2

contains a subpattern of the form:
x1_||(x2_&&!x1_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 10
The following expressions are equivalent:
(x1||(x2&&x1))((x1||x2)&&x1)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x3_

which can be unified with the input for the rule:
x1_||x1_x1

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 9 respectively.

Substitution Lemma 8
It can be shown that:
(x1||(x2&&x1))(x1&&(x1||x2))

PROOF

We start by taking Critical Pair Lemma 10, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1&&x1)x1

PROOF
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PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
x1_&&(!x1_||x2_)

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 12
The following expressions are equivalent:
(x1&&(x1||x2))x1&&a.0||!a.0

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
"0"

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 5 respectively.

Substitution Lemma 9
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Critical Pair Lemma 12, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.

Critical Pair Lemma 13
The following expressions are equivalent:
(x1||x1)x1

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 7 and Equationalized Axiom 1 respectively.

Critical Pair
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Critical Pair Lemma 14
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&x1_x1

where these rules follow from Critical Pair Lemma 7 and Critical Pair Lemma 11 respectively.

Substitution Lemma 10
It can be shown that:
!(!x1_||x2_)||!(!x2_||x3_)||!x1_||x3_y1||!y1

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_||x1_x1

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 15
The following expressions are equivalent:
x1(x1&&(x2||x1))

PROOF

Note that the input for the rule:
x1_&&(x1_||x2_)x1

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 9 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 16
The following expressions are equivalent:
(x1&&x1)(x1&&(x1||!x1))

PROOF

Note that the input for the rule:
x1_&&(x2_||!x1_)x1&&x2

contains a subpattern of the form:
x2_||!x1_
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which can be unified with the input for the rule:
x1_||!x1_x1||!x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 14 respectively.

Substitution Lemma 11
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Critical Pair Lemma 16, and apply the substitution:
x1_&&(x2_||!x2_)x1

which follows from Equationalized Axiom 2.

Substitution Lemma 12
It can be shown that:
(x1&&x1)x1

PROOF

We start by taking Substitution Lemma 11, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 9.

Substitution Lemma 13
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 12, and apply the substitution:
x1_&&x1_x1

which follows from Critical Pair Lemma 11.

Substitution Lemma 14
It can be shown that:
(x1&&(x2||x1))x1

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 15
It can be shown that:
(x1&&(x1||x2))x1

PROOF

We start by taking Substitution Lemma 9, and apply the substitution:
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Out[23]=

 by taking  9,  apply
x1_x1

which follows from Substitution Lemma 13.

Critical Pair Lemma 17
The following expressions are equivalent:
(x1||!x1)(x2||x1||!x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x1_&&(x2_||x1_)

which can be unified with the input for the rule:
(x1_||!x1_)&&x2_x2

where these rules follow from Substitution Lemma 14 and Critical Pair Lemma 5 respectively.

Substitution Lemma 16
It can be shown that:
x1_||(x2_&&x1_)x1

PROOF

We start by taking Substitution Lemma 8, and apply the substitution:
x1_&&(x1_||x2_)x1

which follows from Substitution Lemma 15.

Critical Pair Lemma 18
The following expressions are equivalent:
(x1||x2)(x1||x2||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[412,x1_&&(x1_||x2

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Substitution Lemma 16 and Substitution Lemma 15 respectively.

Substitution Lemma 17
It can be shown that:
(x1||x2)(x1||x1||x2)

PROOF

We start by taking Critical Pair Lemma 18, and apply the substitution:
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x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 19
The following expressions are equivalent:
(x1||((x1||x2)&&x3))((x1||x2)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x1_||x2_x1||x2

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 17 respectively.

Substitution Lemma 18
It can be shown that:
(x1||((x1||x2)&&x3))(x1||(x2&&x3))

PROOF

We start by taking Critical Pair Lemma 19, and apply the substitution:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

which follows from Equationalized Axiom 4.

Critical Pair Lemma 20
The following expressions are equivalent:
(y1||!y1)(!(!x1||x2)||!x1||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[222,x1_||x1_x1

contains a subpattern of the form:
!(!x2_||x3_)||!x1_||x3_

which can be unified with the input for the rule:
x1_||x2_||!x2_x2||!x2

where these rules follow from Substitution Lemma 10 and Critical Pair Lemma 17 respectively.

Substitution Lemma 19
It can be shown that:
(y1||!y1)(!x1||x1)

PROOF

We start by taking Critical Pair Lemma 20, and apply the substitution:
x1_||x2_||!x2_x2||!x2
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which follows from Critical Pair Lemma 17.

Substitution Lemma 20
It can be shown that:
(y1||!y1)(!x1||x1)

PROOF

We start by taking Substitution Lemma 19, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 21
It can be shown that:
(y1||!y1)(x1||!x1)

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 21
The following expressions are equivalent:
(x1||(x2&&(x2||x3)))(x1||x2||(x1&&x3))

PROOF

Note that the input for the rule:
x1_||((x1_||x2_)&&x3_)x1||(x2&&x3)

contains a subpattern of the form:
(x1_||x2_)&&x3_

which can be unified with the input for the rule:
(x1_||x2_)&&(x2_||x3_)x2||(x1&&x3)

where these rules follow from Substitution Lemma 18 and Critical Pair Lemma 3 respectively.

Substitution Lemma 22
It can be shown that:
(x1||x2)(x1||x2||(x1&&x3))

PROOF

We start by taking Critical Pair Lemma 21, and apply the substitution:
x1_&&(x1_||x2_)x1

which follows from Substitution Lemma 15.

Critical Pair Lemma 22
The following expressions are equivalent:
(x1||x2)(x1||(x1&&x3)||x2)
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PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x2_||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 22 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 23
The following expressions are equivalent:
(x1||x2)(x1||x2||(x3&&x1))

PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x1_&&x3_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Substitution Lemma 22 and Equationalized Axiom 9 respectively.

Critical Pair Lemma 24
The following expressions are equivalent:
(x1||x2)(x1||(x3&&x1)||x2)

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)||x3_x1||x3

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 22 and Equationalized Axiom 9 respectively.

Critical Pair Lemma 25
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x3||x1)

PROOF

Note that the input for the rule:
x1_||x2_||(x3_&&x1_)x1||x2

contains a subpattern of the form:
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x3_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Critical Pair Lemma 23 and Substitution Lemma 15 respectively.

Critical Pair Lemma 26
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x2||x3)

PROOF

Note that the input for the rule:
x1_||(x2_&&x1_)||x3_x1||x3

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||x1_)x1

where these rules follow from Critical Pair Lemma 24 and Substitution Lemma 14 respectively.

Critical Pair Lemma 27
The following expressions are equivalent:
(x1||x2||x3)(x3||x1||x1||x2)

PROOF

Note that the input for the rule:
x1_||x2_||x3_||x1_x1||x2||x3

contains a subpattern of the form:
x1_||x2_||x3_||x1_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 25 and Equationalized Axiom 3 respectively.

Substitution Lemma 23
It can be shown that:
(x1||x2||x3)(x3||x1||x2)

PROOF

We start by taking Critical Pair Lemma 27, and apply the substitution:
x1_||x2_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 26.

Substitution Lemma 24
It can be shown that:
(!(x2||y1||z0)||y1||z0||x2)a.0||!a.0

PROOF
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PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 25
It can be shown that:
(!(x2||y1||z0)||z0||x2||y1)a.0||!a.0

PROOF

We start by taking Substitution Lemma 24, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 26
It can be shown that:
(!(x2||z0||y1)||z0||x2||y1)a.0||!a.0

PROOF

We start by taking Substitution Lemma 25, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 27
It can be shown that:
(!(x2||z0||y1)||z0||x2||y1)(y1||!y1)

PROOF

We start by taking Substitution Lemma 26, and apply the substitution:
x1_||!x1_y1||!y1

which follows from Substitution Lemma 21.

Substitution Lemma 28
It can be shown that:
(!(x2||z0||y1)||z0||x2||y1)(y1||!y1)

PROOF

We start by taking Substitution Lemma 27, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 29
It can be shown that:
(!(x2||z0||y1)||z0||x2||y1)(y1||!y1)

PROOF
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We start by taking Substitution Lemma 28, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 30
It can be shown that:
(!(x2||z0||y1)||y1||z0||x2)(y1||!y1)

PROOF

We start by taking Substitution Lemma 29, and apply the substitution:
x1_||x2_||x3_x3||x1||x2

which follows from Substitution Lemma 23.

Substitution Lemma 31
It can be shown that:
(!(x2||z0||y1)||z0||y1||x2)(y1||!y1)

PROOF

We start by taking Substitution Lemma 30, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 32
It can be shown that:
(!(x2||z0||y1)||x2||z0||y1)(y1||!y1)

PROOF

We start by taking Substitution Lemma 31, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 33
It can be shown that:
(!(x2||y1||z0)||x2||z0||y1)(y1||!y1)

PROOF

We start by taking Substitution Lemma 32, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 34
It can be shown that:
(!(x2||y1||z0)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 33, and apply the substitution:
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We start by taking Substitution Lemma 33, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 35
It can be shown that:
(!(y1||z0||x2)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 34, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 36
It can be shown that:
(!(z0||y1||x2)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 35, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 37
It can be shown that:
(!(x2||z0||y1)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 36, and apply the substitution:
x1_||x2_||x3_x3||x1||x2

which follows from Substitution Lemma 23.

Substitution Lemma 38
It can be shown that:
(!(y1||x2||z0)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 37, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 39
It can be shown that:
(!(y1||z0||x2)||x2||y1||z0)(y1||!y1)

PROOF

We start by taking Substitution Lemma 38, and apply the substitution:
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x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 40
It can be shown that:
(x2||y1||z0||!(y1||z0||x2))(y1||!y1)

PROOF

We start by taking Substitution Lemma 39, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 41
It can be shown that:
(x2||y1||z0||!(y1||z0||x2))(y1||!y1)

PROOF

We start by taking Substitution Lemma 40, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 42
It can be shown that:
(x2||y1||z0||!(z0||x2||y1))(y1||!y1)

PROOF

We start by taking Substitution Lemma 41, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 43
It can be shown that:
(x2||y1||z0||!(z0||x2||y1))(y1||!y1)

PROOF

We start by taking Substitution Lemma 42, and apply the substitution:
x1_x1

which follows from Substitution Lemma 13.

Substitution Lemma 44
It can be shown that:
(x2||y1||z0||!(y1||z0||x2))(y1||!y1)

PROOF

We start by taking Substitution Lemma 43, and apply the substitution:
x1_||x2_||x3_x3||x1||x2

Luka_eqv_to_PM.nb    61



which follows from Substitution Lemma 23.

Substitution Lemma 45
It can be shown that:
(x2||y1||z0||!(x2||y1||z0))(y1||!y1)

PROOF

We start by taking Substitution Lemma 44, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 45, and apply the substitution:
x1_||!x1_y1||!y1

which follows from Critical Pair Lemma 8.
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APPENDIX 6.  Proof of PM implies CN1.

In[24]:= proofPMimpCN1["ProofNotebook"]

Axiom 1
We are given that:
PMAxioms

Hypothesis 1
We would like to show that:
∀{x,y,z}((xy)((yz)(xz)))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
a.0||!a.0PMAxioms

Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(!x2||y1)||!(!y1||z0)||!x2||z0)a.0||!a.0

Critical Pair Lemma 1
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Critical Pair Lemma 1
The following expressions are equivalent:
(x1||(x2&&x3))((x2||x1)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Equationalized Axiom 4 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 2
The following expressions are equivalent:
x1(x1&&PMAxioms)

PROOF

Note that the input for the rule:
x1_&&(x2_||!x2_)x1

contains a subpattern of the form:
x2_||!x2_

which can be unified with the input for the rule:
a.0||!a.0PMAxioms

where these rules follow from Equationalized Axiom 2 and Equationalized Axiom 6 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
x1(PMAxioms&&x1)

PROOF

Note that the input for the rule:
x1_&&PMAxiomsx1

contains a subpattern of the form:
x1_&&PMAxioms

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 7 respectively.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1&&(PMAxioms||x2))(x1||(x1&&x2))

PROOF

64     Luka_eqv_to_PM.nb



Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&PMAxiomsx1

where these rules follow from Equationalized Axiom 5 and Critical Pair Lemma 2 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
(x1||!x1)PMAxioms

PROOF

Note that the input for the rule:
PMAxioms&&x1_x1

contains a subpattern of the form:
PMAxioms&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 3 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
x1(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(x2_&&!x2_)x1

contains a subpattern of the form:
x2_&&!x2_

which can be unified with the input for the rule:
PMAxioms&&x1_x1

where these rules follow from Equationalized Axiom 1 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1||(!x1&&x2))(PMAxioms&&(x1||x2))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which  be unified with the input for the rule:
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which can be unified with the input for the rule:
x1_||!x1_PMAxioms

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 5 respectively.

Substitution Lemma 1
It can be shown that:
(x1||(!x1&&x2))(x1||x2)

PROOF

We start by taking Critical Pair Lemma 7, and apply the substitution:
PMAxioms&&x1_x1

which follows from Critical Pair Lemma 3.

Critical Pair Lemma 8
The following expressions are equivalent:
x1(!PMAxioms||x1)

PROOF

Note that the input for the rule:
x1_||!PMAxiomsx1

contains a subpattern of the form:
x1_||!PMAxioms

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
(x1&&!x1)!PMAxioms

PROOF

Note that the input for the rule:
!PMAxioms||x1_x1

contains a subpattern of the form:
!PMAxioms||x1_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 8 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 10
The following expressions are equivalent:
(x1&&(!x1||x2))(!PMAxioms||(x1&&x2))

PROOF

Note that the input for the rule:
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(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&!x1_!PMAxioms

where these rules follow from Equationalized Axiom 5 and Critical Pair Lemma 9 respectively.

Substitution Lemma 2
It can be shown that:
(x1&&(!x1||x2))(x1&&x2)

PROOF

We start by taking Critical Pair Lemma 10, and apply the substitution:
!PMAxioms||x1_x1

which follows from Critical Pair Lemma 8.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1&&(PMAxioms||!x1))(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)x1&&(PMAxioms||x2)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&!x1_!PMAxioms

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 9 respectively.

Substitution Lemma 3
It can be shown that:
(x1&&(PMAxioms||!x1))x1

PROOF

We start by taking Critical Pair Lemma 11, and apply the substitution:
x1_||!PMAxiomsx1

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 12
The following expressions are equivalent:
(x1&&(PMAxioms||x2))(x1||(x2&&x1))

PROOF

Note that the input for the rule:
x1 ||(x1 &&x2 )x1&&(PMAxioms||x2)
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x1_||(x1_&&x2_)x1&&(PMAxioms||x2)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 7 respectively.

Critical Pair Lemma 13
The following expressions are equivalent:
(x1||x1)(x1&&(PMAxioms||!x1))

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&x1_)x1&&(PMAxioms||x2)

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 12 respectively.

Substitution Lemma 4
It can be shown that:
(x1||x1)x1

PROOF

We start by taking Critical Pair Lemma 13, and apply the substitution:
x1_&&(PMAxioms||!x1_)x1

which follows from Substitution Lemma 3.

Critical Pair Lemma 14
The following expressions are equivalent:
(x1||PMAxioms)(x1||!x1)

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&PMAxiomsx1

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 2 respectively.

Substitution Lemma 5
It can be shown that:
(x1||PMAxioms) PMAxioms
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(x1||PMAxioms)PMAxioms

PROOF

We start by taking Critical Pair Lemma 14, and apply the substitution:
x1_||!x1_PMAxioms

which follows from Critical Pair Lemma 5.

Critical Pair Lemma 15
The following expressions are equivalent:
(x1||x1)(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&!x1_!PMAxioms

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 9 respectively.

Substitution Lemma 6
It can be shown that:
(x1||x1)x1

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_||!PMAxiomsx1

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 16
The following expressions are equivalent:
(x1||(x2&&x1))((x1||x2)&&x1)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x3_

which can be unified with the input for the rule:
x1_||x1_x1

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 4 respectively.

Substitution Lemma 7
It can be shown that:
(x1&&(PMAxioms||x2))((x1||x2)&&x1)
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PROOF

We start by taking Critical Pair Lemma 16, and apply the substitution:
x1_||(x2_&&x1_)x1&&(PMAxioms||x2)

which follows from Critical Pair Lemma 12.

Critical Pair Lemma 17
The following expressions are equivalent:
PMAxioms(PMAxioms||x1)

PROOF

Note that the input for the rule:
x1_||PMAxiomsPMAxioms

contains a subpattern of the form:
x1_||PMAxioms

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 5 and Equationalized Axiom 3 respectively.

Substitution Lemma 8
It can be shown that:
x1_||(x2_&&x1_)x1&&PMAxioms

PROOF

We start by taking Critical Pair Lemma 12, and apply the substitution:
PMAxioms||x1_PMAxioms

which follows from Critical Pair Lemma 17.

Substitution Lemma 9
It can be shown that:
x1_||(x2_&&x1_)x1

PROOF

We start by taking Substitution Lemma 8, and apply the substitution:
x1_&&PMAxiomsx1

which follows from Critical Pair Lemma 2.

Substitution Lemma 10
It can be shown that:
(x1&&PMAxioms)((x1||x2)&&x1)

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
PMAxioms||x1_PMAxioms

which follows from Critical Pair Lemma 17.

70     Luka_eqv_to_PM.nb



Substitution Lemma 11
It can be shown that:
x1((x1||x2)&&x1)

PROOF

We start by taking Substitution Lemma 10, and apply the substitution:
x1_&&PMAxiomsx1

which follows from Critical Pair Lemma 2.

Substitution Lemma 12
It can be shown that:
x1(x1&&(x1||x2))

PROOF

We start by taking Substitution Lemma 11, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Critical Pair Lemma 18
The following expressions are equivalent:
x1(x1&&(x2||x1))

PROOF

Note that the input for the rule:
x1_&&(x1_||x2_)x1

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 12 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 19
The following expressions are equivalent:
(x1||x2)(x1||x2||x1)

PROOF

Note that the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[168,x1_&&PMAxioms

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Substitution Lemma 9 and Substitution Lemma 12 respectively.

Critical Pair Lemma 20
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Critical Pair Lemma 20
The following expressions are equivalent:
x1(x1&&x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
x1_||x1_x1

where these rules follow from Critical Pair Lemma 18 and Substitution Lemma 6 respectively.

Critical Pair Lemma 21
The following expressions are equivalent:
(x1&&x2)(x1&&x2&&x2)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[168,x1_&&PMAxioms

where these rules follow from Critical Pair Lemma 18 and Substitution Lemma 9 respectively.

Critical Pair Lemma 22
The following expressions are equivalent:
(x1||x2||!x1)(x1||!x1)

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x2_||x1_)x1

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 18 respectively.

Substitution Lemma 13
It can be shown that:
(x1||x2||!x1)PMAxioms

PROOF

We start by taking Critical Pair Lemma 22, and apply the substitution:
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We start by taking Critical Pair Lemma 22, and apply the substitution:
x1_||!x1_PMAxioms

which follows from Critical Pair Lemma 5.

Substitution Lemma 14
It can be shown that:
(x1||x2)(x1||x1||x2)

PROOF

We start by taking Critical Pair Lemma 19, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Critical Pair Lemma 23
The following expressions are equivalent:
(x1||((x1||x2)&&x3))((x1||x2)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||x1_||x2_x1||x2

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 14 respectively.

Substitution Lemma 15
It can be shown that:
(x1||((x1||x2)&&x3))(x1||(x2&&x3))

PROOF

We start by taking Critical Pair Lemma 23, and apply the substitution:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

which follows from Equationalized Axiom 4.

Critical Pair Lemma 24
The following expressions are equivalent:
(x1||(x2&&(x1||x3)))((x1||x2)&&(x1||x3))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x3_

which can be unified with the input for the rule:
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Out[24]=

x1_||x1_||x2_x1||x2

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 14 respectively.

Substitution Lemma 16
It can be shown that:
(x1||(x2&&(x1||x3)))(x1||(x2&&x3))

PROOF

We start by taking Critical Pair Lemma 24, and apply the substitution:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

which follows from Equationalized Axiom 4.

Substitution Lemma 17
It can be shown that:
x1(x1&&x1)

PROOF

We start by taking Critical Pair Lemma 20, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Substitution Lemma 18
It can be shown that:
(x1&&x2)(x2&&x1&&x2)

PROOF

We start by taking Critical Pair Lemma 21, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Critical Pair Lemma 25
The following expressions are equivalent:
(x1&&x2&&!x1)(x1&&!x1)

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
Language`EquationalProofDump`getConstructRule[EquationalProof`ApplyLemma[168,x1_&&PMAxioms

where these rules follow from Substitution Lemma 2 and Substitution Lemma 9 respectively.

Substitution Lemma 19
It can be shown that:
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(x1&&x2&&!x1)!PMAxioms

PROOF

We start by taking Critical Pair Lemma 25, and apply the substitution:
x1_&&!x1_!PMAxioms

which follows from Critical Pair Lemma 9.

Critical Pair Lemma 26
The following expressions are equivalent:
(x1&&x1)(x1&&PMAxioms)

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
x1_||!x1_PMAxioms

where these rules follow from Substitution Lemma 2 and Critical Pair Lemma 5 respectively.

Substitution Lemma 20
It can be shown that:
x1(x1&&PMAxioms)

PROOF

We start by taking Critical Pair Lemma 26, and apply the substitution:
x1_&&x1_x1

which follows from Substitution Lemma 17.

Substitution Lemma 21
It can be shown that:
True

PROOF

We start by taking Substitution Lemma 20, and apply the substitution:
x1_&&PMAxiomsx1

which follows from Critical Pair Lemma 2.

Critical Pair Lemma 27
The following expressions are equivalent:
PMAxioms(!x1||x2||x1)

PROOF

Note that the input for the rule:
x1_||x2_||!x1_PMAxioms
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contains a subpattern of the form:
!x1_

which can be unified with the input for the rule:
x1_x1

where these rules follow from Substitution Lemma 13 and Substitution Lemma 21 respectively.

Critical Pair Lemma 28
The following expressions are equivalent:
(!PMAxioms)(!x1&&x2&&x1)

PROOF

Note that the input for the rule:
x1_&&x2_&&!x1_!PMAxioms

contains a subpattern of the form:
!x1_

which can be unified with the input for the rule:
x1_x1

where these rules follow from Substitution Lemma 19 and Substitution Lemma 21 respectively.

Critical Pair Lemma 29
The following expressions are equivalent:
(!PMAxioms)(!(x1||x2)&&x1)

PROOF

Note that the input for the rule:
!x1_&&x2_&&x1_!PMAxioms

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Critical Pair Lemma 28 and Substitution Lemma 12 respectively.

Substitution Lemma 22
It can be shown that:
(!PMAxioms)(x1&&!(x1||x2))

PROOF

We start by taking Critical Pair Lemma 29, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Critical Pair Lemma 30
The following expressions are equivalent:
(x1||!(!x1||x2))(x1||!PMAxioms)
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PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&!(x1_||x2_)!PMAxioms

where these rules follow from Substitution Lemma 1 and Substitution Lemma 22 respectively.

Substitution Lemma 23
It can be shown that:
(x1||!(!x1||x2))x1

PROOF

We start by taking Critical Pair Lemma 30, and apply the substitution:
x1_||!PMAxiomsx1

which follows from Critical Pair Lemma 6.

Critical Pair Lemma 31
The following expressions are equivalent:
(!(!x1||x2))(!(!x1||x2)&&x1)

PROOF

Note that the input for the rule:
x1_&&(x2_||x1_)x1

contains a subpattern of the form:
x2_||x1_

which can be unified with the input for the rule:
x1_||!(!x1_||x2_)x1

where these rules follow from Critical Pair Lemma 18 and Substitution Lemma 23 respectively.

Critical Pair Lemma 32
The following expressions are equivalent:
(x1||(x2&&(x2||x3)))(x1||x2||(x1&&x3))

PROOF

Note that the input for the rule:
x1_||((x1_||x2_)&&x3_)x1||(x2&&x3)

contains a subpattern of the form:
(x1_||x2_)&&x3_

which can be unified with the input for the rule:
(x1_||x2_)&&(x2_||x3_)x2||(x1&&x3)

where these rules follow from Substitution Lemma 15 and Critical Pair Lemma 1 respectively.
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Substitution Lemma 24
It can be shown that:
(x1||x2)(x1||x2||(x1&&x3))

PROOF

We start by taking Critical Pair Lemma 32, and apply the substitution:
x1_&&(x1_||x2_)x1

which follows from Substitution Lemma 12.

Critical Pair Lemma 33
The following expressions are equivalent:
(x1||x2)(x1||(x1&&x3)||x2)

PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x2_||(x1_&&x3_)

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 24 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 34
The following expressions are equivalent:
(x1||x2)(x1||x2||(x3&&x1))

PROOF

Note that the input for the rule:
x1_||x2_||(x1_&&x3_)x1||x2

contains a subpattern of the form:
x1_&&x3_

which can be unified with the input for the rule:
x1_&&x2_&&x1_x2&&x1

where these rules follow from Substitution Lemma 24 and Substitution Lemma 18 respectively.

Critical Pair Lemma 35
The following expressions are equivalent:
(x1||x2)(x1||(x3&&x1)||x2)

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)||x3_x1||x3

contains a subpattern of the form:
x1 &&x2
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which can be unified with the input for the rule:
x1_&&x2_&&x1_x2&&x1

where these rules follow from Critical Pair Lemma 33 and Substitution Lemma 18 respectively.

Critical Pair Lemma 36
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x3||x1)

PROOF

Note that the input for the rule:
x1_||x2_||(x3_&&x1_)x1||x2

contains a subpattern of the form:
x3_&&x1_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Critical Pair Lemma 34 and Substitution Lemma 12 respectively.

Critical Pair Lemma 37
The following expressions are equivalent:
(x1||x2||x3)(x1||x2||x2||x3)

PROOF

Note that the input for the rule:
x1_||(x2_&&x1_)||x3_x1||x3

contains a subpattern of the form:
x2_&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||x1_)x1

where these rules follow from Critical Pair Lemma 35 and Critical Pair Lemma 18 respectively.

Substitution Lemma 25
It can be shown that:
(!(!x1||x2))(x1&&!(!x1||x2))

PROOF

We start by taking Critical Pair Lemma 31, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Critical Pair Lemma 38
The following expressions are equivalent:
(x1||x2||x3)(x3||x1||x1||x2)

PROOF

Note that the input for the rule:
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Note that the input for the rule:
x1_||x2_||x3_||x1_x1||x2||x3

contains a subpattern of the form:
x1_||x2_||x3_||x1_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 36 and Equationalized Axiom 3 respectively.

Substitution Lemma 26
It can be shown that:
(x1||x2||x3)(x3||x1||x2)

PROOF

We start by taking Critical Pair Lemma 38, and apply the substitution:
x1_||x2_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 37.

Critical Pair Lemma 39
The following expressions are equivalent:
True

PROOF

Note that the input for the rule:
x1_||x2_||x3_x3_||x1_||x2_

contains a subpattern of the form:
x1_||x2_||x3_

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 26 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 40
The following expressions are equivalent:
(x1||x2||!(x1||x2))PMAxioms

PROOF

Note that the input for the rule:
x1_||x2_||x3_x1||x2||x3

contains a subpattern of the form:
x1_||x2_||x3_

which can be unified with the input for the rule:
x1_||!x1_PMAxioms

where these rules follow from Critical Pair Lemma 39 and Critical Pair Lemma 5 respectively.

Critical Pair Lemma 41
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The following expressions are equivalent:
(x1&&(x2||!(!x1||x2)))(x1&&PMAxioms)

PROOF

Note that the input for the rule:
x1_&&(!x1_||x2_)x1&&x2

contains a subpattern of the form:
!x1_||x2_

which can be unified with the input for the rule:
x1_||x2_||!(x1_||x2_)PMAxioms

where these rules follow from Substitution Lemma 2 and Critical Pair Lemma 40 respectively.

Substitution Lemma 27
It can be shown that:
(x1&&(x2||!(!x1||x2)))x1

PROOF

We start by taking Critical Pair Lemma 41, and apply the substitution:
x1_&&PMAxiomsx1

which follows from Critical Pair Lemma 2.

Critical Pair Lemma 42
The following expressions are equivalent:
(x1||(x2&&!(!x2||x1)))(x1||x2)

PROOF

Note that the input for the rule:
x1_||(x2_&&(x1_||x3_))x1||(x2&&x3)

contains a subpattern of the form:
x2_&&(x1_||x3_)

which can be unified with the input for the rule:
x1_&&(x2_||!(!x1_||x2_))x1

where these rules follow from Substitution Lemma 16 and Substitution Lemma 27 respectively.

Substitution Lemma 28
It can be shown that:
(x1||!(!x2||x1))(x1||x2)

PROOF

We start by taking Critical Pair Lemma 42, and apply the substitution:
x1_&&!(!x1_||x2_)!(!x1||x2)

which follows from Substitution Lemma 25.

Substitution Lemma 29
It can be shown that:
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(!(!x2||y1)||!x2||z0||!(!y1||z0))a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 30
It can be shown that:
(!x2||z0||!(!y1||z0)||!(!x2||y1))a.0||!a.0

PROOF

We start by taking Substitution Lemma 29, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 31
It can be shown that:
(!x2||z0||!(!y1||z0)||!(!x2||y1))PMAxioms

PROOF

We start by taking Substitution Lemma 30, and apply the substitution:
a.0||!a.0PMAxioms

which follows from Equationalized Axiom 6.

Substitution Lemma 32
It can be shown that:
(!x2||z0||!(!y1||z0)||!(!x2||y1))PMAxioms

PROOF

We start by taking Substitution Lemma 31, and apply the substitution:
x1_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 39.

Substitution Lemma 33
It can be shown that:
(!x2||z0||!(!y1||z0)||!(!x2||y1))PMAxioms

PROOF

We start by taking Substitution Lemma 32, and apply the substitution:
x1_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 39.

Substitution Lemma 34
It can be shown that:
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(!x2||z0||y1||!(!x2||y1))PMAxioms

PROOF

We start by taking Substitution Lemma 33, and apply the substitution:
x1_||!(!x2_||x1_)x1||x2

which follows from Substitution Lemma 28.

Substitution Lemma 35
It can be shown that:
(!x2||y1||z0||!(!x2||y1))PMAxioms

PROOF

We start by taking Substitution Lemma 34, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 36
It can be shown that:
(!x2||y1||z0||!(y1||!x2))PMAxioms

PROOF

We start by taking Substitution Lemma 35, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 37
It can be shown that:
(!x2||!(y1||!x2)||y1||z0)PMAxioms

PROOF

We start by taking Substitution Lemma 36, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 38
It can be shown that:
(!(y1||!x2)||y1||z0||!x2)PMAxioms

PROOF

We start by taking Substitution Lemma 37, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 39
It can be shown that:
(!(!x2||y1)||y1||z0||!x2)PMAxioms
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PROOF

We start by taking Substitution Lemma 38, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 40
It can be shown that:
(!(!x2||y1)||y1||z0||!x2)PMAxioms

PROOF

We start by taking Substitution Lemma 39, and apply the substitution:
x1_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 39.

Substitution Lemma 41
It can be shown that:
(!(!x2||y1)||y1||z0||!x2)PMAxioms

PROOF

We start by taking Substitution Lemma 40, and apply the substitution:
x1_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 39.

Substitution Lemma 42
It can be shown that:
(!(!x2||y1)||z0||!x2||y1)PMAxioms

PROOF

We start by taking Substitution Lemma 41, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 43
It can be shown that:
(!(y1||!x2)||z0||!x2||y1)PMAxioms

PROOF

We start by taking Substitution Lemma 42, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 44
It can be shown that:
(!(y1||!x2)||z0||!x2||y1)PMAxioms

P
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PROOF

We start by taking Substitution Lemma 43, and apply the substitution:
x1_||x2_||x3_x1||x2||x3

which follows from Critical Pair Lemma 39.

Substitution Lemma 45
It can be shown that:
(!(y1||!x2)||z0||y1||!x2)PMAxioms

PROOF

We start by taking Substitution Lemma 44, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 45, and apply the substitution:
!x1_||x2_||x1_PMAxioms

which follows from Critical Pair Lemma 27.
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APPENDIX 7.  Proof of PM implies CN2.

In[25]:= proofPMimpCN2["ProofNotebook"]

Axiom 1
We are given that:
PMAxioms

Hypothesis 1
We would like to show that:
∀{x,y}(x(!xy))

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
((x1&&x2)||(x1&&x3))(x1&&(x2||x3))

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
a.0||!a.0PMAxioms

Equationalized Axiom 7
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!x1||x1||y0)a.0||!a.0

Critical Pair Lemma 1
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Critical Pair Lemma 1
The following expressions are equivalent:
x1(x1&&PMAxioms)

PROOF

Note that the input for the rule:
x1_&&(x2_||!x2_)x1

contains a subpattern of the form:
x2_||!x2_

which can be unified with the input for the rule:
a.0||!a.0PMAxioms

where these rules follow from Equationalized Axiom 2 and Equationalized Axiom 6 respectively.

Critical Pair Lemma 2
The following expressions are equivalent:
x1(PMAxioms&&x1)

PROOF

Note that the input for the rule:
x1_&&PMAxiomsx1

contains a subpattern of the form:
x1_&&PMAxioms

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 7 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
(x1&&(PMAxioms||x2))(x1||(x1&&x2))

PROOF

Note that the input for the rule:
(x1_&&x2_)||(x1_&&x3_)x1&&(x2||x3)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&PMAxiomsx1

where these rules follow from Equationalized Axiom 5 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 4
The following expressions are equivalent:
(x1||!x1)PMAxioms

PROOF
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Note that the input for the rule:
PMAxioms&&x1_x1

contains a subpattern of the form:
PMAxioms&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
x1(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(x2_&&!x2_)x1

contains a subpattern of the form:
x2_&&!x2_

which can be unified with the input for the rule:
PMAxioms&&x1_x1

where these rules follow from Equationalized Axiom 1 and Critical Pair Lemma 2 respectively.

Critical Pair Lemma 6
The following expressions are equivalent:
(x1||(!x1&&x2))(PMAxioms&&(x1||x2))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||!x1_PMAxioms

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 4 respectively.

Substitution Lemma 1
It can be shown that:
(x1||(!x1&&x2))(x1||x2)

PROOF

We start by taking Critical Pair Lemma 6, and apply the substitution:
PMAxioms&&x1_x1

which follows from Critical Pair Lemma 2.

Critical Pair Lemma 7
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The following expressions are equivalent:
x1(!PMAxioms||x1)

PROOF

Note that the input for the rule:
x1_||!PMAxiomsx1

contains a subpattern of the form:
x1_||!PMAxioms

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 5 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1&&!x1)!PMAxioms

PROOF

Note that the input for the rule:
!PMAxioms||x1_x1

contains a subpattern of the form:
!PMAxioms||x1_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 7 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 9
The following expressions are equivalent:
(x1&&(PMAxioms||!x1))(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)x1&&(PMAxioms||x2)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&!x1_!PMAxioms

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 8 respectively.

Substitution Lemma 2
It can be shown that:
(x1&&(PMAxioms||!x1))x1

PROOF

We start by taking Critical Pair Lemma 9, and apply the substitution:
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x1_||!PMAxiomsx1

which follows from Critical Pair Lemma 5.

Critical Pair Lemma 10
The following expressions are equivalent:
(x1&&(PMAxioms||x2))(x1||(x2&&x1))

PROOF

Note that the input for the rule:
x1_||(x1_&&x2_)x1&&(PMAxioms||x2)

contains a subpattern of the form:
x1_&&x2_

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 3 and Equationalized Axiom 7 respectively.

Critical Pair Lemma 11
The following expressions are equivalent:
(x1||x1)(x1&&(PMAxioms||!x1))

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
x1_||(!x1_&&x2_)

which can be unified with the input for the rule:
x1_||(x2_&&x1_)x1&&(PMAxioms||x2)

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 10 respectively.

Substitution Lemma 3
It can be shown that:
(x1||x1)x1

PROOF

We start by taking Critical Pair Lemma 11, and apply the substitution:
x1_&&(PMAxioms||!x1_)x1

which follows from Substitution Lemma 2.

Critical Pair Lemma 12
The following expressions are equivalent:
(x1||PMAxioms)(x1||!x1)

PROOF

Note that the input for the rule:
x1 ||(!x1 &&x2 )x1||x2
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x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&PMAxiomsx1

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 1 respectively.

Substitution Lemma 4
It can be shown that:
(x1||PMAxioms)PMAxioms

PROOF

We start by taking Critical Pair Lemma 12, and apply the substitution:
x1_||!x1_PMAxioms

which follows from Critical Pair Lemma 4.

Critical Pair Lemma 13
The following expressions are equivalent:
(x1||(x2&&x1))((x1||x2)&&x1)

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x3_

which can be unified with the input for the rule:
x1_||x1_x1

where these rules follow from Equationalized Axiom 4 and Substitution Lemma 3 respectively.

Substitution Lemma 5
It can be shown that:
(x1&&(PMAxioms||x2))((x1||x2)&&x1)

PROOF

We start by taking Critical Pair Lemma 13, and apply the substitution:
x1_||(x2_&&x1_)x1&&(PMAxioms||x2)

which follows from Critical Pair Lemma 10.

Critical Pair Lemma 14
The following expressions are equivalent:
PMAxioms(PMAxioms||x1)

PROOF

Note that the input for the rule:
x1_||PMAxiomsPMAxioms

Luka_eqv_to_PM.nb    91



contains a subpattern of the form:
x1_||PMAxioms

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Substitution Lemma 4 and Equationalized Axiom 3 respectively.

Substitution Lemma 6
It can be shown that:
(x1&&PMAxioms)((x1||x2)&&x1)

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
PMAxioms||x1_PMAxioms

which follows from Critical Pair Lemma 14.

Substitution Lemma 7
It can be shown that:
x1((x1||x2)&&x1)

PROOF

We start by taking Substitution Lemma 6, and apply the substitution:
x1_&&PMAxiomsx1

which follows from Critical Pair Lemma 1.

Substitution Lemma 8
It can be shown that:
x1(x1&&(x1||x2))

PROOF

We start by taking Substitution Lemma 7, and apply the substitution:
x1_&&x2_x2&&x1

which follows from Equationalized Axiom 7.

Critical Pair Lemma 15
The following expressions are equivalent:
(x1||!x1||x2)(x1||!x1)

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&(x1_||x2_)x1

where these rules follow from Substitution Lemma 1 and Substitution Lemma 8 respectively.
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where these rules follow from Substitution Lemma 1 and Substitution Lemma 8 respectively.

Substitution Lemma 9
It can be shown that:
(x1||!x1||x2)PMAxioms

PROOF

We start by taking Critical Pair Lemma 15, and apply the substitution:
x1_||!x1_PMAxioms

which follows from Critical Pair Lemma 4.

Substitution Lemma 10
It can be shown that:
(!x1||x1||y0)PMAxioms

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
a.0||!a.0PMAxioms

which follows from Equationalized Axiom 6.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 10, and apply the substitution:
x1_||!x1_||x2_PMAxioms

which follows from Substitution Lemma 9.
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APPENDIX 8.  Proof of PM implies CN3.

In[26]:= proofPMimpCN3["ProofNotebook"]

Axiom 1
We are given that:
PMAxioms

Hypothesis 1
We would like to show that:
∀x((!xx)x)

Equationalized Axiom 1
We generate the ''equationalized'' axiom:
x1(x1||(x2&&!x2))

Equationalized Axiom 2
We generate the ''equationalized'' axiom:
x1(x1&&(x2||!x2))

Equationalized Axiom 3
We generate the ''equationalized'' axiom:
(x1||x2)(x2||x1)

Equationalized Axiom 4
We generate the ''equationalized'' axiom:
(x1||(x2&&x3))((x1||x2)&&(x1||x3))

Equationalized Axiom 5
We generate the ''equationalized'' axiom:
a.0||!a.0PMAxioms

Equationalized Axiom 6
We generate the ''equationalized'' axiom:
(x1&&x2)(x2&&x1)

Equationalized Hypothesis 1
We generate the ''equationalized'' hypothesis:
(!(x0||x0)||x0)a.0||!a.0

Critical Pair Lemma 1
The following expressions are equivalent:
x1(x1&&PMAxioms)

PROOF
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PROOF

Note that the input for the rule:
x1_&&(x2_||!x2_)x1

contains a subpattern of the form:
x2_||!x2_

which can be unified with the input for the rule:
a.0||!a.0PMAxioms

where these rules follow from Equationalized Axiom 2 and Equationalized Axiom 5 respectively.

Critical Pair Lemma 2
The following expressions are equivalent:
x1(PMAxioms&&x1)

PROOF

Note that the input for the rule:
x1_&&PMAxiomsx1

contains a subpattern of the form:
x1_&&PMAxioms

which can be unified with the input for the rule:
x1_&&x2_x2_&&x1_

where these rules follow from Critical Pair Lemma 1 and Equationalized Axiom 6 respectively.

Critical Pair Lemma 3
The following expressions are equivalent:
(x1||!x1)PMAxioms

PROOF

Note that the input for the rule:
PMAxioms&&x1_x1

contains a subpattern of the form:
PMAxioms&&x1_

which can be unified with the input for the rule:
x1_&&(x2_||!x2_)x1

where these rules follow from Critical Pair Lemma 2 and Equationalized Axiom 2 respectively.

Critical Pair Lemma 4
The following expressions are equivalent:
x1(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(x2_&&!x2_)x1

contains a subpattern of the form:
x2 &&!x2
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x2_&&!x2_

which can be unified with the input for the rule:
PMAxioms&&x1_x1

where these rules follow from Equationalized Axiom 1 and Critical Pair Lemma 2 respectively.

Critical Pair Lemma 5
The following expressions are equivalent:
(x1||(!x1&&x2))(PMAxioms&&(x1||x2))

PROOF

Note that the input for the rule:
(x1_||x2_)&&(x1_||x3_)x1||(x2&&x3)

contains a subpattern of the form:
x1_||x2_

which can be unified with the input for the rule:
x1_||!x1_PMAxioms

where these rules follow from Equationalized Axiom 4 and Critical Pair Lemma 3 respectively.

Substitution Lemma 1
It can be shown that:
(x1||(!x1&&x2))(x1||x2)

PROOF

We start by taking Critical Pair Lemma 5, and apply the substitution:
PMAxioms&&x1_x1

which follows from Critical Pair Lemma 2.

Critical Pair Lemma 6
The following expressions are equivalent:
x1(!PMAxioms||x1)

PROOF

Note that the input for the rule:
x1_||!PMAxiomsx1

contains a subpattern of the form:
x1_||!PMAxioms

which can be unified with the input for the rule:
x1_||x2_x2_||x1_

where these rules follow from Critical Pair Lemma 4 and Equationalized Axiom 3 respectively.

Critical Pair Lemma 7
The following expressions are equivalent:
(x1&&!x1)!PMAxioms

PROOF
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Note that the input for the rule:
!PMAxioms||x1_x1

contains a subpattern of the form:
!PMAxioms||x1_

which can be unified with the input for the rule:
x1_||(x2_&&!x2_)x1

where these rules follow from Critical Pair Lemma 6 and Equationalized Axiom 1 respectively.

Critical Pair Lemma 8
The following expressions are equivalent:
(x1||x1)(x1||!PMAxioms)

PROOF

Note that the input for the rule:
x1_||(!x1_&&x2_)x1||x2

contains a subpattern of the form:
!x1_&&x2_

which can be unified with the input for the rule:
x1_&&!x1_!PMAxioms

where these rules follow from Substitution Lemma 1 and Critical Pair Lemma 7 respectively.

Substitution Lemma 2
It can be shown that:
(x1||x1)x1

PROOF

We start by taking Critical Pair Lemma 8, and apply the substitution:
x1_||!PMAxiomsx1

which follows from Critical Pair Lemma 4.

Substitution Lemma 3
It can be shown that:
(!(x0||x0)||x0)a.0||!a.0

PROOF

We start by taking Equationalized Hypothesis 1, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 4
It can be shown that:
(x0||!(x0||x0))a.0||!a.0

PROOF

We start by taking Substitution Lemma 3, and apply the substitution:
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We start by taking Substitution Lemma 3, and apply the substitution:
x1_||x2_x2||x1

which follows from Equationalized Axiom 3.

Substitution Lemma 5
It can be shown that:
(x0||!(x0||x0))PMAxioms

PROOF

We start by taking Substitution Lemma 4, and apply the substitution:
a.0||!a.0PMAxioms

which follows from Equationalized Axiom 5.

Substitution Lemma 6
It can be shown that:
(x0||!x0)PMAxioms

PROOF

We start by taking Substitution Lemma 5, and apply the substitution:
x1_||x1_x1

which follows from Substitution Lemma 2.

Conclusion 1
We obtain the conclusion:
True

PROOF

Take Substitution Lemma 6, and apply the substitution:
x1_||!x1_PMAxioms

which follows from Critical Pair Lemma 3.
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